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What’s to Be Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks
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China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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Eigenanalysis & PCA (cont’d)
• A d x d covariance matrix contains a maximum of d eigenvector/eigenvalue pairs. 

• Assuming you have N images of size M x M pixels, we have dimension d = M2.
• With the rank of ∑ as            , we have at most                          non-zero eigenvalues.
• How dimension reduction is realized? how to reconstruct the input data?

• Expanding a signal via eigenvectors as bases
• With symmetric matrices (e.g., covariance matrix), eigenvectors are orthogonal.
• They can be regarded as unit basis vectors to span any instance in the d-dim space.
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Practical Issues in PCA

• Assume we have N = 100 images of size 200 x 200 pixels (i.e., d = 40000).
• What is the size of the covariance matrix? What’s its rank?

• What can we do? Gram Matrix Trick!
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Let’s See an Example (CMU AMP Face Database)

• Let’s take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.

• # of eigenvectors are expected to use for perfectly reconstructing the input = 64.

• Let’s check it out!
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What Do the Eigenvectors/Eigenfaces Look Like?
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V4 V5 V6 V7

V8 V9 V10 V11

V12 V13 V14 V15

Mean V1 V2 V3



All 64 Eigenvectors, do we need them all?
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Use only 1 eigenvector, MSE = 1233
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MSE=1233.16



Use 2 eigenvectors, MSE = 1027
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MSE=1027.63



Use 3 eigenvectors, MSE = 758
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MSE=758.13



All 64 eigenvectors, MSE = 0
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MSE=0.00



Final Remarks

• Linear & unsupervised dimension reduction

• PCA can be applied as a feature extraction/preprocessing technique.
• E.g,, Use the top 3 eigenvectors to project data into a 3D space for classification.
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Final Remarks (cont’d)

• How do we classify? For example…
• Given a test face input, project into the same 3D space (by the same 3 eigenvectors).
• The resulting vector in the 3D space is the feature for this test input.
• We can do a simple Nearest Neighbor (NN) classification with Euclidean distance, 

which calculates the distance to all the projected training data in this space.
• If NN, then the label of the closest training instance determines the classification output.
• If k-nearest neighbors (k-NN), then k-nearest neighbors need to vote for the decision.
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k = 1 k = 3 k = 5

Image credit: Stanford CS231n

Demo available at http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Final Remarks (cont’d)

• If labels for each data is provided → Linear Discriminant Analysis (LDA)
• LDA is also known as Fisher’s discriminant analysis.
• Eigenface vs. Fisherface (IEEE Trans. PAMI 1997)

• If linear DR is not sufficient, and non-linear DR is of interest…
• lsomap, locally linear embedding (LLE), etc.

• t-distributed stochastic neighbor embedding (t-SNE) (by G. Hinton & L. van der Maaten)
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What’s to Be Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks
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China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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What is PCA?
What are we trying to do?

• We want to find projections of data (i.e., direction vectors that we can 
project the data on to) that describe the maximum variation.

x

y
y

Axis that describes the 
largest variation (or scatter)
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What is LDA?
What are we trying to do?

• We want to find projections that separate the classes with the 
assumption of unimodal Gaussian modes.

• That is, to max. distance between two means while min. the variances

• =>will lead to minimize overall probability of error
y

x
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Case 1: A simple 2-class problem

• We want to maximize the distance between the projected means:
e.g., maximize

2
1 2µ µ− 
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= (wTµ1−wTµ2)2

= w (µ1 −µ2 ) (µ1 −µ2 ) w

= wTS w

T T

B

SB = (µ1 −µ2 )(µ1 −µ2)T

We want to maximize wTSBw where SB is the between class 
scatter matrix defined as:

NOTE: SB is rank 1. This will be useful later on to find closed form solution for 2-class LDA

Between Class Scatter Matrix SB

2
1 2(μ  - μ ) 
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We also want to minimize….

• The variance or scatter of the projected samples from each class (i.e. we 
want to make each class more compact or closer to its mean). The 
scatter from class 1 defined as s1 is given as

• Thus we want to minimize the scatter of class 1 and class 2 in projected 
space, i.e.

minimize the total scatter

1
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Fisher Linear Discriminant Criterion Function

• Objective #1:  We want to maximize the between class scatter:

• Objective #2:  We want to minimize the within-class scatter.

• Thus we define our objective function J(w) as the following ratio that we 
want to maximize in order to achieve the above objectives:

2
1 2( )µ µ− 

2 2
1 2s s+ 
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LDA

• Thus we want to find the vector w that maximizes J(w).
• Let’s expand on scatter s1 & s2.
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Total Within-Class Scatter Matrix

• We want to minimize total within-class scatter. i.e.

• This is equivalent to minimize wTSww

2 2
1 2s s+ 
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Solving LDA

• Maximize

• We need to find the optimal w which will maximize the above ratio.

• What do we do now?

J (w) = wTS wB

wTS wW
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Some calculus….

25



LDA derivation

SBw −J (w)SWw = 0

SBw −λSWw = 0

SBw = λSWw
Generalized Eigenvalue problem

SW
-1SB w = λw

If Sw is non-singular and invertible.

We want to maximize J(w). This 
is equivalent to the derivation 
of the eigenvector w with the
largest eigenvalue. Why?
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Special Case LDA Solution for 2-Class Problems

• Lets replace what SB is for two classes and see how we can simplify to 
get a closed form solution.
(i.e., we would like to get a solution of the vector w for the 2-class case.)

• We know that in two class case, there is only 1 w vector. 
Lets use this knowledge cleverly…
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SB = (µ1 −µ2 )(µ1 −µ2 )T =mmT

| |
m(2)m m(N )m
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| |

 







B

SB has only 1 linearly independent colum vector => Rank 1 matrix

SB is rank 1
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2-class LDA

• Basically in this generalized eigenvalue/eigenvector problem, the 
number of valid eigenvectors with non- zero eigenvalue is determined by 
the minimum rank of matrices SB and Sw.

• In this case, there is only 1 valid eigenvector with a non-zero
eigenvalue! (i.e., there is only one valid w vector solution.)

SB = (µ1 −µ2 )(µ1 −µ2 )T

SW
-1SB w = λw

i=1 j=1

Sw =∑∑ (x j −µi )(x j −µi )T
C Ni
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• Lets see and simplify the 2 class case:

which gives

(µ1−µ2 )T w = scalar = β

(µ1 −µ2 )β = λ SWw

(µ1−µ2)(µ1−µ2)T w =λSWw

2-class LDA (cont’d)
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(µ1 −µ2 )β = λSWw

2-Class LDA Closed Form Solution
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Multi-Class LDA

• What if we have more that 2 classes…what then?
• We need more than one w projection vector to provide separapability.

• Let’s look at our math derivations to see what changes.
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Multi-Class LDA (cont’d)

• Maximize

• Lets start with the Between-Class Scatter matrix for 2 class.

• However, SB now is the between class scatter matrix for many classes. We 
need to make all the class means furthest from each other. One way is to 
push them as far away from their global mean

J (w) = wTS wB

wTS wW

SB = (µ1 −µ2 )(µ1 −µ2)T

1
( )( )

cN
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B i i
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S µ µ µ µ
=

= − −∑
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If Sw is non-singular and invertible.

For C classes we have at most C-1 w vectors where we can project on to. Why?

Multi-Class LDA (cont’d)

• LDA solution:

Generalized Eigenvalue problem, the number of valid eigenvectors are bound by the
MINIMUM rank of matrix (SB,SW). In this case SB is typically lowest rank which is sum
of C outer-product matrices. (Since they subtract the global mean, the rank is C-1.

B wS w S wλ=

1
w BS S w wλ− =
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When Would LDA Fail?

• What happens when we deal with high-dimensional data.
• If more dimensions d than sample # N, then we run into more problems.

• Sw is singular. It will still have at most N-C non-zero eigenvalues.
N is the total number of samples from all classes, C is the number of classes.
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Fisherfaces

• Solution? Fisherfaces…..
• First do PCA and keep N-C eigenvectors. Project your data on to these N-C 

eigenvectors. (Sw will now be full rank = N-C not d.)
• Do LDA and compute the c-1 projections in this N-C dimensional subspace.
• PCA + LDA = Fisherfaces!

(read the famous PAMI paper of ‘Fisherfaces vs Eigenfaces’)
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Hyperparameters in ML

• Recall that for k-NN, we need to determine the k value in advance. 
• What is the best k value?
• And, what is the best distance/similarity metric?
• Similarly, take PCA for example, what is the best reduced dimension number?

• Hyperparameters: choices about the learning model/algorithm of interest
• We need to determine such hyperparameters instead of learn them.
• Let’s see what we can do and cannot do…
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k = 1 k = 3 k = 5

Image credit: Stanford CS231n



What’s to Be Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks
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China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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How to Determine Hyperparameters?

• Idea #1
• Let’s say you are working on face recognition.
• You come up with your very own feature extraction/learning algorithm.
• You take a dataset to train your model, and select your hyperparameters

based on the resulting performance.

•

39

Dataset



How to Determine Hyperparameters? (cont’d)

• Idea #2
• Let’s say you are working on face recognition.
• You come up with your very own feature extraction/learning algorithm.
• For a dataset of interest, you split it into training and test sets.
• You train your model with possible hyperparameter choices, 

and select those work best on test set data.

•
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Training set Test set



How to Determine Hyperparameters? (cont’d)

• Idea #3
• Let’s say you are working on face recognition.
• You come up with your very own feature extraction/learning algorithm.
• For the dataset of interest, it is split it into training, validation, and test sets.
• You train your model with possible hyperparameter choices, and select those 

work best on the validation set.

•
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Training set Test setValidation set

Training set Test setValidation set



How to Determine Hyperparameters? (cont’d)

• Idea #3.5
• What if only training and test sets are given, not the validation set?
• Cross-validation (or k-fold cross validation)

• Split the training set into k folds with a hyperparameter choice
• Keep 1 fold as validation set and the remaining k-1 folds for training
• After each of k folds is evaluated, report the average validation performance.
• Choose the hyperparameter(s) which result in the highest average validation 

performance. 

• Take a 4-fold cross-validation as an example…
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Training set Test set

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4



Minor Remarks on NN-based Methods

• In fact, k-NN (or even NN) is not of much interest in practice. Why?
• Choice of distance metrics might be an issue. See example below.
• Measuring distances in high-dimensional spaces might not be a good idea.
• Moreover, NN-based methods require lots of               and                              !

(That is why NN-based methods are viewed as data-driven approaches.)

43Image credit: Stanford CS231n

All three images have the same Euclidean distance to the original one.



What’s to Be Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks
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China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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Color as Image Representation

• Default Color Space

• Remarks
• Easy for devices
• But not perceptual
• Where do the grays live?
• Where is hue and saturation?

45
Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png
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Interest Points as Image Representation

• Examples 
• Image alignment 
• 3D reconstruction
• Motion tracking
• Object recognition
• Robot navigation
• Indexing and database retrieval
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Recall that: Interest Points?

• Registration & Correspondence
• Identifying corresponding points/patches/regions across images
• Apps: matching, alignment, stitching, etc.

≈
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Why Interest Points? (cont’d)

• Example: panorama

Credit: Matt Brown
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Why Interest Points? (cont’d)

• Example: tracking

frame 0 frame 22 frame 49 

x x
x
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About Interest Points

• Key Trade-offs

A1

A2 A3

Few Points More Points

Detection

More Distinctive More Flexible

Description

Robust to occlusion
Works with less texture

Minimize wrong matches Robust to expected variations
Maximize correct matches

More distinctive representation
Robust detection
Precise localization
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Scale Invariant Feature Transform (SIFT)

• Key Ideas
• Take a 4 x 4 (= 16 grids) square window around each detected keypoint
• Compute edge orientation (angle of the gradient - 90°) for each pixel in it
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

0 2π

angle histogram
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Image Categorization

• Object Recognition

Average Object Images of Caltech 101 
52



Image Categorization

• Fine-Grained Recognition

Visipedia Project 53

http://www.vision.caltech.edu/visipedia/


Image Categorization

• Image style recognition

[Karayev et al. BMVC 2014] 54

http://arxiv.org/pdf/1311.3715.pdf


Image Categorization

• Dating historical photos

1940 1953 1966 1977

[Palermo et al. ECCV 2012]
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http://repository.cmu.edu/cgi/viewcontent.cgi?article=1776&context=robotics


What Are the Right Features?
(When deep features are not applicable…)

• Depending on the task of interest!
• Possible choices

• Object: shape
• Local shape info, shading, shadows, texture

• Scene : geometric layout
• linear perspective, gradients, line segments

• Material properties: albedo, feel, hardness
• Color, texture

• Action: motion
• Optical flow, tracked points
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Image Representation: Histograms

• Global histogram
• Possible to describe color, texture, depth, or even interest points!

Images from Dave Kauchak 57



Bag-of-Words Models for Image Classification

• Analogy to document categorization
Of all the sensory impressions proceeding to the 
brain, the visual experiences are the dominant ones. 
Our perception of the world around us is based 
essentially on the messages that reach the brain 
from our eyes. For a long time it was thought that 
the retinal image was transmitted point by point to 
visual centers in the brain; the cerebral cortex was a 
movie screen, so to speak, upon which the image in 
the eye was projected. Through the discoveries of 
Hubel and Wiesel we now know that behind the 
origin of the visual perception in the brain there is a 
considerably more complicated course of events. By 
following the visual impulses along their path to the 
various cell layers of the optical cortex, Hubel and 
Wiesel have been able to demonstrate that the 
message about the image falling on the retina 
undergoes a step-wise analysis in a system of nerve 
cells stored in columns. In this system each cell has 
its specific function and is responsible for a specific 
detail in the pattern of the retinal image.

sensory, brain, 
visual, perception, 

retinal, cerebral cortex,
eye, cell, optical 

nerve, image
Hubel, Wiesel

China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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Bag of Words (or Visual Words)
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Image Representation: Histograms
• Take images with 2D features/descriptors as an example

Feature 1

Fe
at

ur
e 

2
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Image Representation: Histograms
• # of occurrence of data in each bin
• Marginal histogram of feature 1

Feature 1

Fe
at

ur
e 

2

bin 61



Image Representation: Histograms
• # of occurrence of data in each bin
• Marginal histogram of feature 2

Feature 1

Fe
at

ur
e 

2 bin
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Image Representation: Histograms
• Better modeling (quantization) of multi-dimensional data
• Clustering

• Use the same cluster center to represent the associated features

Feature 1

Fe
at

ur
e 

2

bin
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Image Representation: Histograms
• Better modeling (quantization) of multi-dimensional data
• Clustering

• Use the same cluster center to represent the associated features

Feature 1

Fe
at

ur
e 

2 bin
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Remarks on Histogram-Based Image Representation

• Quantization
• Grids vs. clusters

• Possible  distance metrics
• Euclidean distance
• Histogram intersection kernel
• Chi-squared distance
• Earth mover’s distance

(min cost to transform one distribution to another)
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Bag-of-Words for Image Classification

• Training 

…

k = 1

k = 2

k = 3

2
1
0

Training 
images

Interest point 
detection

Clustering 
(dictionary learning)

Feature Encoding

Quantization
(w/ normalization)
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Bag-of-Words for Image Classification

• Testing

…

k = 1

k = 2

k = 3

1
0
1

Interest point 
detection

Clustering 
(dictionary learning)

Feature Encoding

Quantization
(w/ normalization)
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Bag-of-Words for Image Classification

• Overview

[Chatfieldet al. BMVC 2011] 68

http://www.robots.ox.ac.uk/%7Evgg/publications/2011/Chatfield11/chatfield11.pdf


About Feature Encoding for Bag-of-Words

• Hard vs. soft assignments to clusters

69



About Feature Encoding for Bag-of-Words

• Sum vs. max pooling

= sum vs. max

70



Final Remarks on BoW

• What’s the limitation?
• Loss of…

• What’s the possible solution?
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Final Remarks on BoW

• Spatial pyramid
• Compute BoW in each spatial grid + concatenation

[Lazebnik et al. CVPR 2006] 72

http://www.di.ens.fr/sierra/pdfs/cvpr06b.pdf


What’s to Be Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks
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to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
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high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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Linear Classification
• Linear Classifier

• Can be viewed as a parametric approach. Why?
• Assuming that we need to recognize 10 object categories of interest
• E.g., CIFAR10 with 50K training & 10K test images of 10 categories.

And, each image is of size 32 x 32 x 3 pixels.
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Linear Classification (cont’d)
• Linear Classifier

• Can be viewed as a parametric approach. Why?
• Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
• Let’s take the input image as x, and the linear classifier as W. We hope to see 

that y = Wx + b as a 10-dimensional output indicating the score for each class.

75Image credit: Stanford CS231n
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Linear Classification (cont’d)
• Linear Classifier

• Can be viewed as a parametric approach. Why?
• Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
• Let’s take the input image as x, and the linear classifier as W. We hope to see 

that y = Wx + b as a 10-dimensional output indicating the score for each class.
• Take an image with 2 x 2 pixels & 3 classes of interest as example:

we need to learn linear transformation/classifer W and bias b,
so that desirable outputs y = Wx + b can be expected. 

76Image credit: Stanford CS231n



Some Remarks
• Interpreting y = Wx + b

• What can we say about the learned W?
• The weights in W are trained by observing training data X and their ground truth Y.
• Each column in W can be viewed as an exemplar of the corresponding class.
• Thus, Wx basically performs inner product (or correlation) between the input x and 

the exemplar of each class. (Signal & Systems!)

77
Image credit: Stanford CS231n



Linear Classification

• Remarks
• Starting points for many multi-class or complex/nonlinear classifier
• How to determine a proper loss function for matching y and Wx+b, and thus 

how to learn the model W (including the bias b), are the keys to the learning 
of an effective classification model.

78Image credit: Stanford CS231n



What’s to Be Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks

79

China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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Biological neuron and Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier
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Hubel/Wiesel Architecture and Multi-layer Neural Network

Hubel and Weisel’s architecture Multi-layer Neural Network
- A non-linear classifier

81



Hierarchical Learning

• Successive model layers learn deeper intermediate representations.
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Revisit of Linear Classification
• Linear Classifier

• Can be viewed as a parametric approach. Why?
• Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).
• Let’s take the input image as x, and the linear classifier as W. We hope to see 

that y = Wx + b as a 10-dimensional output indicating the score for each class.

83Image credit: Stanford CS231n
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Multi-Layer Perceptron: A Nonlinear Classifier
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)

85



Layer 1 in MLP
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Layer 2 in MLP
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)
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Let’s Get a Closer Look…

一5 0 5
0

0.5

1

output of neuron

activity of neuron

inputs to neuron

• A single neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Input-Output Function of a Single Neuron (cont’d)
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Weight Space of a Single Neuron
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Training a Single Neuron

0

1

0

0

classclass

training data

inputs class labels
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Training a Single Neuron

0

1

0

0

classclass

training data

inputs class labels

desired result of training:
neuron outputs for

neuron outputs for
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Training a Single Neuron

0

1

0

0

classclass

objective function:

training data

surprise
relative entropy between

when observing
and

inputs class labels

desired result of training:
neuron outputs for

neuron outputs for

encourages neuron output
to match training data 109



Training a Single Neuron

0

training data
1

0

objective function:

0

inputs class labels

choose the weights that minimise the network's surprise 
about the training data

= prediction error X feature

iteratively step down the objective (gradient points up hill)110



Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Training a Single Neuron
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Overfitting and Weight Decay

0

training data
1

0

objective function:

0

inputs class labels

regulariser discourages the network using extreme weights

weight decay - shrinks weights
towards zero 118



Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Training a Single Neuron (cont’d)
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Single Hidden Layer Neural Networks

inputs 
layer

1

0

output

hidden 
layer
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Training a Neural Network with a Single Hidden Layer

objective function:
likelihood same as before 

regulariser discourages extreme weights
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Training a Neural Network with a Single Hidden Layer

objective function:
likelihood same as before 

regulariser discourages extreme weights

Networks with hidden layers can be fit using gradient descent using an
algorithm called back-propagation.
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer

0
−5

0
5 −5

0

5

0.2

0.4

0.6

0.8

1

z2
z1

x

−5 0
z

5
−5

0

5

1
z 2

134



Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Hierarchical Models with Many Layers

inputs 
layer

output

hidden 
layer
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What We Have Covered Today…

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation

• Image Representation
• Bag-of-Words Representation
• Linear Classification
• Intro to Neural Networks
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China is forecasting a trade surplus of $90bn (£51bn) 
to $100bn this year, a threefold increase on 2004's 
$32bn. The Commerce Ministry said the surplus 
would be created by a predicted 30% jump in 
exports to $750bn, compared with a 18% rise in 
imports to $660bn. The figures are likely to further 
annoy the US, which has long argued that China's 
exports are unfairly helped by a deliberately 
undervalued yuan.  Beijing agrees the surplus is too 
high, but says the yuan is only one factor. Bank of 
China governor Zhou Xiaochuan said the country 
also needed to do more to boost domestic demand 
so more goods stayed within the country. China 
increased the value of the yuan against the dollar by 
2.1% in July and permitted it to trade within a 
narrow band, but the US wants the yuan to be 
allowed to trade freely. However, Beijing has made 
it clear that it will take its time and tread carefully 
before allowing the yuan to rise further in value.
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