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What’s to Be Covered Today...

e Unsupervised vs. Supervised Learning
e Clustering
* Unsup. vs. Sup. Dimension Reduction
* Training, testing, & validation

* |[mage Representation
e Bag-of-Words Representation
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Eigenanalysis & PCA (cont’d)

* A dxd covariance matrix contains a maximum of d eigenvector/eigenvalue pairs.
* Assuming you have N images of size M x M pixels, we have dimension d = M?2.
e With the rank of  as , we have at most non-zero eigenvalues.
* How dimension reduction is realized? how to reconstruct the input data?

* Expanding a signal via eigenvectors as bases
e With symmetric matrices (e.g., covariance matrix), eigenvectors are orthogonal.
* They can be regarded as unit basis vectors to span any instance in the d-dim space.



Practical Issues in PCA

e Assume we have N = 100 images of size 200 x 200 pixels (i.e., d = 40000).
e What is the size of the covariance matrix? What’s its rank?

e What can we do? Gram Matrix Trick!



Let’s See an Example (CMU AMP Face Database)

e Let’s take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.
* # of eigenvectors are expected to use for perfectly reconstructing the input = 64.

e Let’s check it out!




What Do the Eigenvectors/Eigenfaces Look Like?

Mean

V1
.
V5
-
V9
.
V13




All 64 Eigenvectors, do we need them all?
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Use only 1 eigenvector, MSE = 1233

MSE=1233.16




Use 2 eigenvectors, MSE = 1027

MSE=1027.63




Use 3 eigenvectors, MSE = 758

MSE=758.13
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All 64 eigenvectors, MSE =0

MSE=0.00
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Final Remarks

° Linear & unsupervised dimension reduction

* PCA can be applied as a feature extraction/preprocessing technique.

e E.g,, Use the top 3 eigenvectors to project data into a 3D space for classification.
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Final Remarks (cont’d)

How do we classify? For example...

Given a test face input, project into the same 3D space (by the same 3 eigenvectors).
The resulting vector in the 3D space is the feature for this test input.

We can do a simple Nearest Neighbor (NN) classification with Euclidean distance,
which calculates the distance to all the projected training data in this space.

If NN, then the label of the closest training instance determines the classification output.

If k-nearest neighbors (k-NN), then k-nearest neighbors need to vote for the decision.

k=3

Demo available at http://vision.stanford.edu/teaching/cs231n-demos/knn/

Image credit: Stanford CS231n 13


http://vision.stanford.edu/teaching/cs231n-demos/knn/

Final Remarks (cont’d)

» If labels for each data is provided - Linear Discriminant Analysis (LDA)
e LDA is also known as Fisher’s discriminant analysis.
e Eigenface vs. Fisherface (IEEE Trans. PAMI 1997)

e |f linear DR is not sufficient, and non-linear DR is of interest...

* |somap, locally linear embedding (LLE), etc.

e t-distributed stochastic neighbor embedding (t-SNE) (by G. Hinton & L. van der Maaten)
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What’s to Be Covered Today...

e Unsupervised vs. Supervised Learning

Sup. Dimension Reduction
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What is PCA?
What are we trying to do?

 We want to find projections of data (i.e., direction vectors that we can
project the data on to) that describe the maximum variation.

1 Axis that describes the
largest variation (or scatter)

A 4



What is LDA?
What are we trying to do?

 We want to find projections that separate the classes with the
assumption of unimodal Gaussian modes.

 That is, to max. distance between two means while min. the variances

e =>will lead to minimize overall probability of error

A

\
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Case 1: A simple 2-class problem

 We want to maximize the distance between the projected means:
. ~ ~ 12
e.g., maximize |,u1—y2|



Between Class Scatter Matrix S

(B - )" = (W —WTHy)?
=W (W —Hp) (K —H,) "W
=W'S_ W

We want to maximize w'Sgw where S; is the between class
scatter matrix defined as:

Sg = (Mg —Hy )(Hy — M)

NOTE: S; is rank 1. This will be useful later on to find closed form solution for 2-class LDA



We also want to minimize....

e The variance or scatter of the projected samples from each class (i.e. we
want to make each class more compact or closer to its mean). The
scatter from class 1 defined as s, is given as

=1

 Thus we want to minimize the scatter of class 1 and class 2 in projected
space, i.e.

o ~2  ~ 2
minimize the total scatter S1 + 52 Y




Fisher Linear Discriminant Criterion Function

* Objective #1: We want to maximize the between class scatter:
~ a2
|(;U1 - :Uz)|
e Objective #2: We want to minimize the within-class scatter.
~ 2 ~ 2
S, +35,

* Thus we define our objective function J(w) as the following ratio that we
want to maximize in order to achieve the above objectives:



LDA

e Thus we want to find the vector w that maximizes J(w).
* Let’s expand on scatter s; & s,

N, N,
§12 :Z(Xi _/[ll)z §22 :Z(Xi _ﬁz)z

= =
N, N,

= (WX —W g)? = (WX =W 11,)°
= =
N, N,

=2 W (=) =)' W=D W (X ) (% — )W
=) =

=w'S,w =w'S,w



Total Within-Class Scatter Matrix

* \We want to minimize total within-class scatter. i.e.
~ 2 ~ 2
Sl + 82

 This is equivalent to minimize w'S ,w



Solving LDA

w'S_ w
T
w'S,, W

* We need to find the optimal w which will maximize the above ratio.

* Maximize ] (W) —

e What do we do now?



Some calculus....



LDA derivation

Sgw -J(w)S,,w=0
\

SgW =AS,,W

Generalized Eigenvalue problem

If S,, is non-singular and invertible.

We want to maximize J(w). This
is equivalent to the derivation
of the eigenvector w with the
largest eigenvalue. Why?



Special Case LDA Solution for 2-Class Problems

* Lets replace what S is for two classes and see how we can simplify to
get a closed form solution.

(i.e., we would like to get a solution of the vector w for the 2-class case.)

 We know that in two class case, there is only 1 w vector.
Lets use this knowledge cleverly...



Sgisrank 1

Sg = (Mg, )y, )" =mm’

Sc=mm’' =im@)m m(2)m m(N)m

Sg has only 1 linearly independent colum vector =>Rank 1 matrix




2-class LDA
-1 .
SwiSgW =AW

Sg = gulNiﬂiz Yy 4 )"
Sy :ZZ (Xj _Ui)(xj -;)'

i=1 j=1
e Basically in this generalized eigenvalue/eigenvector problem, the

number of valid eigenvectors with non- zero eigenvalue is determined by
the minimum rank of matrices Sg and S,

e Inthis case,thereis only 1valid eigenvector with anon-zero
eigenvalue! (i.e., thereis only one valid w vector solution.)



2-class LDA (cont’d)

e Lets see and simplify the 2 class case:

(M4 _|~l2 AS W
/

(L~ M, )'w=scalar = 3

which gives (“1 — U'Z)ﬂ = 2« SWW



2-Class LDA Closed Form Solution

(M —H2) 0 = ASyW



Multi-Class LDA

 What if we have more that 2 classes...what then?
 We need more than one w projection vector to provide separapability.

e Let’s look at our math derivations to see what changes.



Multi-Class LDA (cont’d)

wW'S w

e Maximize J(w) =
(W) w'S,,w

e Lets start with the Between-Class Scatter matrix for 2 class.

_ T
Sg = (Hy —Hz )My —H2)
* However, S; now is the between class scatter matrix for many classes. We

need to make all the class means furthest from each other. One way is to
push them as far away from their global mean

Sg = Z(ﬂi — ) (1, — 1)’



Multi-Class LDA (cont’d)

* LDA solution: SBW — ASWW

Generalized Eigenvalue problem, the number of valid eigenvectors are bound by the
MINIMUM rank of matrix (Sg,Syy). In this case S; is typically lowest rank which is sum
of C outer-product matrices. (Since they subtract the global mean, the rank is C-1.

-1
If S,, is non-singular and invertible.

For C classes we have at most C-1 w vectors where we can project on to. Why?



When Would LDA Fail?

 What happens when we deal with high-dimensional data.
e If more dimensions d than sample # N, then we run into more problems.
e S, is singular. It will still have at most N-C non-zero eigenvalues.

N is the total number of samples from all classes, Cis the number of classes.

S, S,W=Aw

S, =22 (6~ )X, — )
Se =D (1t — 1) (gt — )’

=1



Fisherfaces

Solution? Fisherfaces.....

First do PCA and keep N-C eigenvectors. Project your data on to these N-C
eigenvectors. (S,, will now be full rank = N-C not d.)

Do LDA and compute the c-1 projections in this N-C dimensional subspace.
PCA + LDA = Fisherfaces!

(read the famous PAMI paper of ‘Fisherfaces vs Eigenfaces’)

S, S.w=Aw



Hyperparameters in ML

e Recall that for k-NN, we need to determine the k value in advance.
e What is the best k value?
* And, what is the best distance/similarity metric?

e Similarly, take PCA for example, what is the best reduced dimension number?

 Hyperparameters: choices about the learning model/algorithm of interest
e We need to determine such hyperparameters instead of learn them.

e Let’s see what we can do and cannot do...

k=3

Image credit: Stanford CS231n 37



What’s to Be Covered Today...

e Unsupervised vs. Supervised Learning

* Training, testing, & validation
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How to Determine Hyperparameters?

* |dea #1
e Let’s say you are working on face recognition.
* You come up with your very own feature extraction/learning algorithm.

* You take a dataset to train your model, and select your hyperparameters
based on the resulting performance.

39



How to Determine Hyperparameters? (cont’d)

ldea #2

Let’s say you are working on face recognition.
You come up with your very own feature extraction/learning algorithm.
For a dataset of interest, you split it into training and test sets.

You train your model with possible hyperparameter choices,
and select those work best on test set data.

Training set Test set

40



How to Determine Hyperparameters? (cont’d)

ldea #3

Let’s say you are working on face recognition.
You come up with your very own feature extraction/learning algorithm.
For the dataset of interest, it is split it into training, validation, and test sets.

You train your model with possible hyperparameter choices, and select those
work best on the validation set.

21

Training set Validation set Test set
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How to Determine Hyperparameters? (cont’d)

e |dea #3.5

e What if only training and test sets are given, not the validation set?
e Cross-validation (or k-fold cross validation)
e Split the training set into k folds with a hyperparameter choice
 Keep 1 fold as validation set and the remaining k-1 folds for training
* After each of k folds is evaluated, report the average validation performance.

 Choose the hyperparameter(s) which result in the highest average validation
performance.

* Take a 4-fold cross-validation as an example...

Fold 1 Fold 2 Fold 3 Fold 4 Test set

Fold 1 Fold 2 Fold 3 Fold 4 Test set
Fold 1 Fold 2 Fold 3 Fold 4 Test set
Fold 1 Fold 2 Fold 3 Fold 4 Test set

42



Minor Remarks on NN-based Methods

e In fact, k-NN (or even NN) is not of much interest in practice. Why?
e Choice of distance metrics might be an issue. See example below.
 Measuring distances in high-dimensional spaces might not be a good idea.

e Moreover, NN-based methods require lots of and !
(That is why NN-based methods are viewed as data-driven approaches.)

Original Boxed Shifted Tinted

All three images have the same Euclidean distance to the original one.

Image credit: Stanford C$231n 43



What’s to Be Covered Today...

* |[mage Representation

Bag-of-Words Representation

Linear Classification

Intro to Neural Networks

Input #1

Input #2

Input #3

Input #4
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layer layer
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2.1% in July and permitted it to trade witf¥
narrow band, but the US wants the yuan to
allowed to trade freely. However, Beijing has
it clear that it will take its time and tread caref
before allowing the yuan to rise further in value.
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Color as Image Representation

e Default Color Space

G
(R=0,B=0)
e Remarks
* Easy for devices B
(R=0,G=0)

* But not perceptual
 Where do the grays live?
* Where is hue and saturation?

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png
45



Interest Points as Image Representation

e Examples

Image alignment

3D reconstruction

Motion tracking

Object recognition

Robot navigation

Indexing and database retrieval

46



Recall that: Interest Points?

e Registration & Correspondence
» |dentifying corresponding points/patches/regions across images
e Apps: matching, alignment, stitching, etc.

47



Why Interest Points? (cont’d)

e Example: panorama

& i B A el

Credit: Matt Brown



Why Interest Points? (cont’d)

e Example: tracking

frame 0 frame 22 frame 49

49



About Interest Points

e Key Trade-offs

Detection

Few Points More Points
More distinctive representation Robust to occlusion
Robust detection Works with less texture

Precise localization

Description
More Distinctive More Flexible
Minimize wrong matches Robust to expected variations

Maximize correct matches



Scale Invariant Feature Transform (SIFT)

e Key ldeas
e Take a 4 x 4 (= 16 grids) square window around each detected keypoint
e Compute edge orientation (angle of the gradient - 90°) for each pixel in it
e Throw out weak edges (threshold gradient magnitude)
e Create histogram of surviving edge orientations

0 27

angle histogram

Image gradients



Image Categorization

e Object Recognition

Average Object Images of Caltech 101

52



Image Categorization

* Fine-Grained Recognition

< 9 o 5 @

Generalist Insect catching Grain eating Coniferousseed eating Mectar feeding
Chiseling Dip netting Surface skimming scything Prabing
— .4’ :’ —@-—1 ;’
Aerial fishing Pursuit fishing Scavenging Eapt-:-rlal Filter feeding

Visipedia Project

53


http://www.vision.caltech.edu/visipedia/

Image Categorization

* Image style recognition

A =)

Vintage Noir

Long Exposure Romantic Abs. Expressionism Color Field Painting

Flickr Style: 80K images covering 20 styles. Wikipaintings: 85K images for 25 art genres.

[Karayev et al. BMVC 2014]
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http://arxiv.org/pdf/1311.3715.pdf

Image Categorization

e Dating historical photos

1940 1953 1966 1977

[Palermo et al. ECCV 2012]
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http://repository.cmu.edu/cgi/viewcontent.cgi?article=1776&context=robotics

What Are the Right Features?
(When deep features are not applicable...)

* Depending on the task of interest!

e Possible choices
e Object: shape
e Local shape info, shading, shadows, texture
e Scene : geometric layout
e linear perspective, gradients, line segments
 Material properties: albedo, feel, hardness
e Color, texture
e Action: motion

e Optical flow, tracked points e



Image Representation: Histograms

e Global histogram
* Possible to describe color, texture, depth, or even interest points!

SHBEEA I I I 1 1

SEen - —
4R - —
ZEan - —

cEaa - —

15E@E —ml —
. ] |

= 5a 184G 158 Ssaa &25Sa Zag

Images from Dave Kauchak 57



Bag-of-Words Models for Image Classification

e Analogy to document categorization

retinal, cerebral cortex,
eye, cell, optical
nerve, image
% Hubel, Wiesel
. )

China is forecasting a trade_suirnlus of $90bn (E51bn)
to $100bn this yea
S32bn. The Ca#

would be ¢

China, trade,
surplus, commerce,
exports, imports, US,
yuan, bank, domestic,
foreign, increase,
China gover trade, value

exports

2.1% in July and permitted it to trade wi
narrow band, but the US wants the yuan t@
allowed to trade freely. However, Beijing ha
it clear that it will take its time and tread carei
before allowing the yuan to rise further in value
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Bag of Words (or Visual Words)

59



Image Representation: Histograms

* Take images with 2D features/descriptors as an example

Feature 2

Feature 1

60



Image Representation: Histograms

e # of occurrence of data in each bin

* Marginal histogram of feature 1
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Image Representation: Histograms

e # of occurrence of data in each bin

e Marginal histogram of feature 2
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Image Representation: Histograms

e Better modeling (quantization) of multi-dimensional data

e Clustering

Feature 2

* Use the same cluster center to represent the associated features

Feature 1 63




Image Representation: Histograms

* Better modeling (quantization) of multi-dimensional data

e Clustering
* Use the same cluster center to represent the associated features

‘ '”0‘

bin

Feature 2

Feature 1 64



Remarks on Histogram-Based Image Representation

e Quantization
e Grids vs. clusters

e

Fewer Bins More Bins
Need less data Need more data
Coarser representation Finer representation

e Possible distance metrics
e Euclidean distance

e Histogram intersection kernel >

1 & [hi(m)—h,(m)]

e Chi-squared distance 2i(hh) == :

2o h(m)+h;(m)
e Earth mover’s distance m=l j
(min cost to transform one distribution to another)

histint(h, h,) =1—ZK: min(h,(m), h, (m))

65



Bag-of-Words for Image Classification
* Training

Interest point
detection
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Bag-of-Words for Image Classification

* Testing

1 Feature Encoding

0| <=

1 Quantization
(w/ normalization)

Interest point
detection

~

1
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N
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Bag-of-Words for Image Classification

e Overview

.

N

&,
L

\ 4
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e
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e 5 i 3 i |

e.g. SIFT

gd monkey?

DD|Ir‘I

>

[Chatfieldet al. BMVC 2011]

classification
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http://www.robots.ox.ac.uk/%7Evgg/publications/2011/Chatfield11/chatfield11.pdf

About Feature Encoding for Bag-of-Words

e Hard vs. soft assignments to clusters

M1
O
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'D/ff ot
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W
Mo N\ ks
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About Feature Encoding for Bag-of-Words

e Sum vs. max pooling

o [ J=sumvs max & [

70



Final Remarks on BoW

e What’s the limitation?
e Loss of...

* What’s the possible solution?

1400

1200 -

1000 -

800+

71



Final Remarks on BoW

e Spatial pyramid

e Compute BoW in each spatial grid + concatenation

level 0 level 1 level 2
® 5 + + o ® O + + o ® O |+ + o
o ® + Py +
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B L] + 3 [ ] + ] B ] + @
° ° °
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® + 4 ® + 4, + ® + |4 F
B — ol L s+l o JoL s+l
nlm = o Ole|am
I H I 1 [ [ [ 1 1 ED ol
nlnm 0
1 . 0] o o | [ . .l
x 1/4 x 1/4 X 1/2

[Lazebnik et al. CVPR 2006]
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http://www.di.ens.fr/sierra/pdfs/cvpr06b.pdf

What’s to Be Covered Today...

* |[mage Representation
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Input #4
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Linear Classification

e Linear Classifier
e Can be viewed as a parametric approach. Why?
 Assuming that we need to recognize 10 object categories of interest

e E.g., CIFAR10 with 50K training & 10K test images of 10 categories.
And, each image is of size 32 x 32 x 3 pixels.

bird
cat
deer
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Linear Classification (cont’d)

e Linear Classifier
* Can be viewed as a parametric approach. Why?
e Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).

e Let’s take the input image as x, and the linear classifier as W. We hope to see
thaty = Wx + b as a 10-dimensional output indicating the score for each class.

3072x1
mage Y= TXW)|= WIX| +[b ] 10x-
] 10x1  10x3072
s > f(x,W) —>

: - i_: T

Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights

10 numbers giving
class scores

Image credit: Stanford CS231n 75



Linear Classification (cont’d)

e Linear Classifier
* Can be viewed as a parametric approach. Why?
e Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).

e Let’s take the input image as x, and the linear classifier as W. We hope to see
thaty = Wx + b as a 10-dimensional output indicating the score for each class.

e Take an image with 2 x 2 pixels & 3 classes of interest as example:
we need to learn linear transformation/classifer W and bias b,
so that desirable outputs y = Wx + b can be expected.

Stretch pixels into column

56
\ 02 |05 01 | 2.0 1.1 -96.8 | Cat score
B 230 231
S N
P 15 | 13 | 21 | 0.0 4| 32 | = | 437.9 | Dog score
24 52
. b . 24
_ 0 (025] 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2

W

Image credit: Stanford CS231n



Some Remarks

Interpretingy = Wx + b
e What can we say about the learned W?

3072x1

f(x,W)|=[Wr +[b ] 10x
10x1 10x3072

—> f(x,W) ——

Array of 32x32x3 numbers t

(3072 numbers total) W

parameters
or weights

Image

10 numbers giving
class scores

e The weights in W are trained by observing training data X and their ground truth Y.

e Each column in W can be viewed as an exemplar of the corresponding class.

e Thus, Wx basically performs inner product (or correlation) between the input x and
the exemplar of each class. (Signal & Systems!)

airplane B oo LB = K5 1 i

bird
cat
deer
dog
frog
horse
ship
truck

Image credit: Stanford CS231n



Linear Classification

e Remarks

e Starting points for many multi-class or complex/nonlinear classifier

e How to determine a proper loss function for matching y and Wx+b, and thus

how to learn the model W (including the bias b), are the keys to the learning
of an effective classification model.

3072x1
f(x,W)|=[W +[b] 10x1
10x1 10x3072 N
f(x,W) 10 numbers giving »

Neural Network

P

Image

class scores Linear
- 1 classifiers
Array of 32x32x3 numbers
(3072 numbers total) W
parameters
or weights

Image credit: Stanford C5231n 78



What’s to Be Covered Today...

* |[mage Representation

China is forecasting a trade surplus of $90bn (£51bn)
to $100bn this year z== 2004's

* Intro to Neural Networks SnThe G (e, RS

surplus, commerce,
exports, imports, US,
yuan, bank, domestic,
undervek) foreign, increase,

\ tra, value

Input Hidden Output
layer layer layer

Input #1

Input #2 d
. Output 2.1% in July and permitted it to trade witf¥
narrow band, but the US wants the yuan to
allowed to trade freely. However, Beijing has
it clear that it will take its time and tread caref
before allowing the yuan to rise further in value.

Input #3

Input #4
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Biological neuron and Perceptrons

A biological neuron

Output: c(w-x + b)

Sigmoid function:

|
o(l) = ]

An artificial neuron (Perceptron)
- a linear classifier




Hubel/Wiesel Architecture and Multi-layer Neural Network

Hubel & Weisel featural hierarchy output layer
topographical mapping

hyrer-cn mplex : .
” hidden layer

cell

input layer

Multi-layer Neural Network
- A non-linear classifier




Hierarchical Learning

Successive model layers learn deeper intermediate representations.

High-level
linguistic representations

Parts combine
to form objects
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Revisit of Linear Classification

e Linear Classifier
* Can be viewed as a parametric approach. Why?
e Assuming that we need to recognize 10 object categories of interest (e.g., CIFAR10).

e Let’s take the input image as x, and the linear classifier as W. We hope to see
thaty = Wx + b as a 10-dimensional output indicating the score for each class.

3072x1
mage Y= TXW)|= WIX| +[b ] 10x-
] 10x1  10x3072
s > f(x,W) —>

: - i_: T

Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights

10 numbers giving
class scores

Image credit: Stanford CS231n 33



Multi-Layer Perceptron: A Nonlinear Classifier
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)
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Layer 1 in MLP
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Layer 2 in MLP
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Multi-Layer Perceptron: A Nonlinear Classifier (cont’d)

hidden units

Bishop 2006
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Let’s Get a Closer Look...

e Asingle neuron !

0
-5 0

a
. _ 1
.’L((I) = TFoxp(=0) I e (O, 1)
D
Wo + 2 gy Wazd

= ZdDzo Wdzd

|
'}

output of neuron L

activity of neuron

S
|

iInputs to neuron



Input-Output Function of a Single Neuron

w = [0,1]

o

o

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)
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Input-Output Function of a Single Neuron

w = [0.3,0.9]

o

o

o

o

1

X(ZL ZZ) — 1+exp(—w1z1—W2z2)
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Input-Output Function of a Single Neuron

1
—W1Z1—W2Z2)

X(ZL ZZ) = T+exp(
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Input-Output Function of a Single Neuron

1
—W1Z1—W2Z2)

X(ZL ZZ) = T+exp(
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Input-Output Function of a Single Neuron

‘1

w = [0.9,0.5]

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)

96



Input-Output Function of a Single Neuron

w = [0.9,0.3]

[QV

5

0

-5

1

z

X(ZL ZZ) = T+exp(

—W1Z1—W2Z2)

L

1
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Input-Output Function of a Single Neuron

i \

o

o

o

o

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)
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Input-Output Function of a Single Neuron

o

o

o

o

— 1
X(ZL ZZ) — 1+exp(—w1z1—W2Zz2)
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Input-Output Function of a Single Neuron (cont’d)

w = [0,1]

o

o

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)
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Input-Output Function of a Single Neuron (cont’d)

w = [0,3]

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)
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Input-Output Function of a Single Neuron (cont’d)

w = [0,4]

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)




Input-Output Function of a Single Neuron (cont’d)

w = [0,5]

— 1
X(ZL ZZ) — 1+exp(—w1z1—W2Zz2)



Input-Output Function of a Single Neuron (cont’d)

w =[0,1] contours wiz1 + wez =c=w'z
w . .
5/ Tw] SEts direction of boundary

\w\ sets steepness of boundary

— 1
X(ZL ZZ) — 1+exp(—wi1z1—WwW2z2)
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Training a Single Neuron

training data
{zH {t

inputs class labels

class t(™ — 0 class ¢ =1



Training a Single Neuron

desired result of training:

neuron outputs X(z("); w) ~ 1 for tm —1

L 7
. L7

==

Y i '
E=z|

I

I

neuron outputs X(z('”); w) =0 for t(" —0

i
i

a2
0 ""':‘:':""“"'-:’f?‘"-zl"‘ ' R0 22
_f training data
7 1 -2 (R, (P
7 wi - 3 inputs class labels

class t(™ — 0 class t(™ =1
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Training a Single Neuron

desired result of training:

neuron outputs X(z("); w) ~ 1 for tm —1

fAZFF) .
£xr - 2 neuron outputs x(2"):w) = 0 for +(m) —
i l)

f

LA gy Ny A iy L 7L
e .‘.'-5"'4 '
of 77~

L7 7

training data
{z0 {t 5
inputs class labels

class t(™ — 0 class t(™ =1

objective function:
Gw)=-)_, [t(”) log X(z('”'); w) + (1 —t")log (1 — x(z(’”'); w))] > ()
surprise — log p(outcome) when observing ¢(m) } encourages neuron output

relative entropy between X(z(n); w) and ™ to match training data 109



Training a Single Neuron

training data
{z1 {t L

inputs class labels

objective function:
Gw) == [t logx(z");w) 4+ (1 —t") log (1 — x(2");w))] >0

w* = arg min G(w) choose the weights that minimise the network's surprise

w about the training data
d dG (w) dr™
MG(w) = Z d;c((")) il Z(t<”’) — (™) 2™ = prediction error x feature
d, n

W <— W — TIEG(U?) iteratively step down the objective (gradient points up hill);10
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ining a

Tra

—

@
o

©
o

15 20

10
iteration

112



Training a Single Neuron

w =[0.9,-0.2]
5
{
~ [ J
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Z, iteration

113



Training a Single Neuron

w=[1.1,0.1]
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Training a Single Neuron

w = [1.4,0.4]
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Training a Single Neuron

w = [5.2,12.6]
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Training a Single Neu
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Overfitting and Weight Decay

training data
{z1 {t L

inputs class labels

objective function:

Gw) ==, [t logx(z");w) 4+ (1 — ") log (1 — x(2");w))]

E(w) = % Zl w'f regulariser discourages the network using extreme weights
w* = argmin M (w) = argmin [G(w) + o« E(w)]

i.M(w) = — Z(t(") — M)z 4 qw  weight decay - shrinks weights

dw - towards zero s



Training a Single Neuron (cont’d)

w  =[0-1 _
reg ~ 10~ 1] w=1[0,-1]
5 5r
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Training a Single Neuron (cont’d)

Wieg = [0:4,70.7]  w=1[04,-0.7]

@ original
® regularised

0 10 20 30 40 50
iteration
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Training a Single Neuron (cont’d)

w_ =[0.6,-0.4]
reg
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Training a Single Neuron (cont’d)

Wieg = [0-8,-0.2] w = [0.8,-0.3]
N .
N0
-5
-5

\. ® original
® regularised

objective
S

0 10 20 30 40 50
iteration
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Training a Single Neuron (cont’d)

5-
N N
N N 0
[ ]
-5 5
O @ original
= ® regularised
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O 0
@ 10
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0 10 20 30 40 50
iteration
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Training a Single Neuron (cont’d)

objective

0 10 20 30 40 50
iteration
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Training a Single Neuron (cont’d)

®  original
® regularised

objective
80

0 10 20 30 40 50
iteration
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Single Hidden Layer Neural Networks

1
output T .,I:(a) = o=
—_— K 1 e
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hidden I+exp(—ay)
layer D
= 01 Wkazd

inputs > 29 2D
layer



Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Sampling Random Neural Network Classifiers
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Training a Neural Network with a Single Hidden Layer

a = Zszl Wil L

. _ 1
J'(ak)  1+exp(—ayp)
Z1 Z9 ) A = Zd:l k,dzd

objective function:
GW,w) == [t 1ogx™ + (1 — ") log (1 —x(™))] likelihood same as before

) _ 1 2 1 2 requlariser discourages extreme weights
E(W,w) = 5 D Wi + 3 Z«z:j W5 g g g

{W,w*} = argmin M (W, w) = arg min [G(W, w) + o E(W, w)]

W.w W.w



Training a Neural Network with a Single Hidden Layer

Networks with hidden layers can be fit using gradient descent using an
algorithm called back-propagation.

_ 1
2(0) = T

K
wp a = Zk:l Wi L
. _ 1
] J/(ij)  1+exp(—ayp)
Wiwn
_ L D
21 22 ZD ap = Zdzl Wk,d’zd

objective function:
GW,w) == [t 1ogx™ + (1 — ") log (1 —x(™))] likelihood same as before

) _ 1 2 1 2 requlariser discourages extreme weights
E(W,w) = 5 D Wi + 3 Z«z:j W5 g g g

{W,w*} = argmin M (W, w) = arg min [G(W, w) + o E(W, w)]
W, w W, w

dG W w) Z dG(W, w) du™ 3 dG(W, w) dz™ da'™

@) dWi; da(m) dIV,,_j

_ Z dG/( W w) dz™ da™ du'™ AG(W, w) dz™ da™ dz'™ g™

i

dzlm)  daln ‘sz] ; d(m) dalm d:ngwxda(”)d Wi,




Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Training a Neural Network with a Single Hidden Layer
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Hierarchical Models with Many Layers

output T

hidden
layer

inputs > 29 2D
layer




What We Have Covered Today...

e Unsupervised vs. Supervised Learning
e Clustering
* Unsup. vs. Sup. Dimension Reduction
* Training, testing, & validation

* |[mage Representation
e Bag-of-Words Representation

(] |_|near' ClaSS|f|Cat|on China is forecasting a trade surplus of $90bn (£51bn)
to $100bn this year, — szce on 2004's

* Intro to Neural Networks e P
exports surplus, commerce, %

exports, imports, US,
yuan, bank, domestic,
foreign, increase,

tra, value

Input Hidden Output annoy

layer layer

Input #1

layer
Input #2 — e % ™~ AT aga
put 7 DS y 2.1% in July and permitted it to trade witf
K X @ . + Output : ’
I 43 LN ; narrow band, but the US wants the yuan to
nput G 7 AR ? allowed to trade freely. However, Beijing has
; @l it clear that it will take its time and tread caref
before allowing the yuan to rise further in value.

Input #4
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