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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction 
• Training, testing, & validation
• Linear Classification
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Bayesian Decision Theory

• Fundamental statistical approach to classification/detection tasks
• Example (for a 2-class scenario):

• Let’s see if a student would pass or fail the course of DLCV.
• Define a probabilistic variable ω describe the case of pass or fail.
• That is, ω = ω1 for pass, and ω = ω2 for fail.

• Prior Probability
• The a priori or prior probability reflects the knowledge of how likely we expect 

a certain state of nature before observation.
• P(ω = ω1) or simply P(ω1) as the prior that the next student would pass DLCV.
• The priors must exhibit exclusivity and exhaustivity, i.e., 
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Prior Probability (cont’d)

• Equal priors
• If we have equal numbers of students pass/fail DLCV, then the priors are equal; 

in other words, the priors are uniform.

• Decision rule based on priors only
• If the only available info is the prior, 

and the cost of any type of incorrect classification is equal, 
what would be a reasonable decision rule?

• Decide ω1 if

otherwise decide ω2 .
• What’s the incorrect classification rate (or error rate) Pe?
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Class-Conditional Probability Density (or Likelihood)

• The probability density function (PDF) for input/observation x given 
a state of nature ω is written as:

• Here’s (hopefully) the hypothetical class-conditional densities 
reflecting the studying time of students who pass/fail DLCV.
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Posterior Probability & Bayes Formula

• If we know the prior distribution and the class-conditional density, 
can we come up with a better decision rule?

• Yes We Can! By calculating the posterior probability.

• Posterior probability 𝑃𝑃(𝜔𝜔|𝒙𝒙) :
• The probability of a certain state of nature ω given an observable x.

• Bayes formula:
𝑃𝑃 𝜔𝜔𝑗𝑗 ,𝒙𝒙

𝑃𝑃(𝜔𝜔𝑗𝑗|𝒙𝒙)

And, we have ∑𝑗𝑗=1𝐶𝐶 𝑃𝑃(𝜔𝜔𝑗𝑗|𝒙𝒙) = 1.
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Decision Rule & Probability of Error

• For a given observable x, the decision rule will be now based on:

• What’s the probability of error P(error) (or Pe)?
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From Bayes Decision Rule to Detection Theory

• Hit (or detection), false alarm, miss (or false reject), correct & false rejection
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From Bayes Decision Rule to Detection Theory

• Receiver Operating Characteristics (ROC)
• To assess the effectiveness of the designed 

features/classifiers/detectors
• False alarm (PFA) vs. detection (PD) rates
• Which curve/line makes sense? (a), (b), or (c)?
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Dimension Reduction & Clustering
• Linear Classification
• Training, testing, & validation
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Why Review Linear Systems?

• Aren’t DL models considered to be non-linear?
• Yes, but there are lots of things (e.g., problem setting, feature 

representation, regularization, etc.) in the fields of learning and vision 
starting from linear formulations.

11

(xi, yi)

y=mx+b

Image credit: CMU 16720 / Stanford CS231n



Rank of a Matrix

• Consider A as a m x n matrix, the rank of matrix A, or rank(A), is determined 
as the maximum number of linearly independent row/column vectors.

• Thus, we have rank(A) = rank(AT) and rank(A) ≤ or ≥ (?) min(m, n).

• If rank(A) = min(m, n), A is a full-rank matrix.
• If m = n = rank(A) (i.e., A is a squared matrix and full-rank), 

what can we say about A-1?

• If m = n but rank(A) < m, what can we do to compute A-1 in practice?
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Solutions to Linear Systems

• Let A x = b, where A is a m x n matrix, x is n x 1 vector (to be determined),
and b is a m x 1 vector (observation).

• We consider A x = b as a linear system with m equations & n unknowns.

• If m = n &  rank(A) = m, we can solve x by Gauss Elimination, 
or simply x = A-1b. (A-1 is the inverse matrix of A).

• For a matrix A = xxT, what is the rank of A? 
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Pseudoinverse of a Matrix (I)

• Given A x = b, if m < n & rank(A) = m…
• We have more # of unknowns than # of equations, i.e., underdetermined.
• Which x is typically desirable?

• Ever heard of the optimization technique of Lagrange multipliers?
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Pseudoinverse of a Matrix (II)

• Given A x = b, if m > n & rank(A) = n…
• We have more # of equations than # of unknowns, i.e., overdetermined. 
• How to get a desirable x?
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation
• Linear Classification
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Clustering

• Clustering is an unsupervised algorithm.
• Given:  

a set of N unlabeled instances {x1, …, xN}; # of clusters K
• Goal: group the samples into K partitions

• Remarks:
• High within-cluster (intra-cluster) similarity
• Low between-cluster (inter-cluster) similarity
• But…how to determine a proper similarity measure?
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Similarity is NOT Always Objective…
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Clustering (cont’d) 

• Similarity:
• A key component/measure to perform data clustering
• Inversely proportional to distance
• Example distance merrics:

• Euclidean distance (L2 norm): 𝑑𝑑 𝑥𝑥, 𝑧𝑧 = 𝑥𝑥 − 𝑧𝑧 2 = ∑𝑖𝑖=1𝐷𝐷 𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖 2

• Manhattan distance (L1 norm): 𝑑𝑑 𝑥𝑥, 𝑧𝑧 = 𝑥𝑥 − 𝑧𝑧 1 = ∑𝑖𝑖=1𝐷𝐷 𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖

• Note that p-norm of x is denoted as:
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Clustering (cont’d) 
• Similarity:

• A key component/measure to perform data clustering
• Inversely proportional to distance
• Example distance metrics:

• Kernelized (non-linear) distance: 

𝑑𝑑 𝑥𝑥, 𝑧𝑧 = Φ(𝑥𝑥) −Φ 𝑧𝑧 2
2 = Φ 𝑥𝑥 2

2 + Φ 𝑧𝑧 2
2 − 2Φ(𝑥𝑥)𝑇𝑇Φ(𝑧𝑧)

• Taking Gaussian kernel for example: 𝐾𝐾 𝑥𝑥, 𝑧𝑧 = Φ 𝑥𝑥 𝑇𝑇Φ 𝑧𝑧 = 𝑒𝑒𝑥𝑥𝑒𝑒 − 𝑥𝑥−𝑧𝑧 2
2

2𝜎𝜎2
,

we have

And, distance is more sensitive to larger/smaller σ. Why?
• For example, L2 or kernelized distance metrics for the following two cases?
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K-Means Clustering

• Input: N examples {x1, . . . , xN } (xn ∈RD ); number of partitions K
• Initialize: K cluster centers µ1, . . . , µK . Several initialization options:

• Randomly initialize µ1, . . . , µK anywhere in RD

• Or, simply choose any K examples as the cluster centers
• Iterate:

• Assign each of example xn to its closest cluster center
• Recompute the new cluster centers µk (mean/centroid of the set Ck )
• Repeat while not converge

• Possible convergence criteria:
• Cluster centers do not change anymore
• Max. number of iterations reached

• Output:
• K clusters (with centers/means of each cluster)
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K-Means Clustering

• Example (K = 2): Initialization, iteration #1: pick cluster centers
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K-Means Clustering

• Example (K = 2): iteration #1-2, assign data to each cluster
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K-Means Clustering

• Example (K = 2): iteration #2-1, update cluster centers
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K-Means Clustering

• Example (K = 2): iteration #2, assign data to each cluster
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K-Means Clustering

• Example (K = 2): iteration #3-1
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K-Means Clustering

• Example (K = 2): iteration #3-2
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K-Means Clustering

• Example (K = 2): iteration #4-1
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K-Means Clustering

• Example (K = 2): iteration #4-2
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K-Means Clustering

• Example (K = 2): iteration #5, cluster means are not changed.
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K-Means Clustering (cont’d)

• Proof in 1-D case (if time permits).
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K-Means Clustering (cont’d)
• Limitation

• Sensitive to initialization; how to alleviate this problem?
• Sensitive to outliers; possible change from K-means to…
• Hard assignment only. Mathematically, we have…

• Preferable for round shaped clusters with similar sizes

• Remarks
• Speed-up possible by hierarchical clustering
• Expectation–maximization (EM) algorithm
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation
• Linear Classification
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Unsupervised Dimension Reduction
• Principal Component Analysis (PCA)

• Unsupervised & linear dimension reduction
• Related to Eigenfaces, etc. feature extraction and classification techniques
• Still very popular despite of its simplicity and effectiveness.
• Goal: 

• Determine the projection, so that the variation of projected data is maximized.

34x
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Formulation & Derivation for PCA

• Input: a set of instances x without label info

• Output: a projection vector ω maximizing the variance of the projected data

• In other words, we need to maximize var 𝝎𝝎𝑇𝑇𝒙𝒙 with 𝝎𝝎 = 1.
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Formulation & Derivation for PCA (cont’d)

• Lagrangian optimization for PCA
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Eigenanalysis & PCA
• Eigenanalysis for PCA…find the eigenvectors ei and the corresponding eigenvalues λi

• In other words, the direction ei captures the variance of λi.
• But, which eigenvectors to use though? All of them?

• A d x d covariance matrix contains a maximum of d eigenvector/eigenvalue pairs. 
• Do we need to compute all of them? Which ei and λi pairs to use?
• Assuming you have N images of size M x M pixels, we have dimension d = M2.
• What is the rank of ∑?
• Thus, at most                          non-zero eigenvalues can be obtained.
• How dimension reduction is realized? how to reconstruct the input data?
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Eigenanalysis & PCA (cont’d)
• A d x d covariance matrix contains a maximum of d eigenvector/eigenvalue pairs. 

• Assuming you have N images of size M x M pixels, we have dimension d = M2.
• With the rank of ∑ as            , we have at most                          non-zero eigenvalues.
• How dimension reduction is realized? how to reconstruct the input data?

• Expanding a signal via eigenvectors as bases
• With symmetric matrices (e.g., covariance matrix), eigenvectors are orthogonal.
• They can be regarded as unit basis vectors to span any instance in the d-dim space.
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Practical Issues in PCA

• Assume we have N = 100 images of size 200 x 200 pixels (i.e., d = 40000).
• What is the size of the covariance matrix? What’s its rank?

• What can we do? Gram Matrix Trick!
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Let’s See an Example (CMU AMP Face Database)

• Let’s take 5 face images x 13 people = 65 images, each is of size 64 x 64 = 4096 pixels.

• # of eigenvectors are expected to use for perfectly reconstructing the input = 64.

• Let’s check it out!
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What Do the Eigenvectors/Eigenfaces Look Like?
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V4 V5 V6 V7

V8 V9 V10 V11

V12 V13 V14 V15

Mean V1 V2 V3



All 64 Eigenvectors, do we need them all?
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Use only 1 eigenvector, MSE = 1233
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MSE=1233.16



Use 2 eigenvectors, MSE = 1027
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MSE=1027.63



Use 3 eigenvectors, MSE = 758

45

MSE=758.13



Use 4 eigenvectors, MSE = 634
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MSE=634.54



Use 8 eigenvectors, MSE = 285
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MSE=285.08



With 20 eigenvectors, MSE = 87
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MSE=87.93



With 30 eigenvectors, MSE = 20
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MSE=20.55



With 50 eigenvectors, MSE = 2.14

50

MSE=2.14



With 60 eigenvectors, MSE = 0.06
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MSE=0.06



All 64 eigenvectors, MSE = 0
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MSE=0.00



Final Remarks

• Linear & unsupervised dimension reduction

• PCA can be applied as a feature extraction/preprocessing technique.
• E.g,, Use the top 3 eigenvectors to project data into a 3D space for classification.
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Final Remarks (cont’d)

• How do we classify? For example…
• Given a test face input, project into the same 3D space (by the same 3 eigenvectors).
• The resulting vector in the 3D space is the feature for this test input.
• We can do a simple Nearest Neighbor (NN) classification with Euclidean distance, 

which calculates the distance to all the projected training data in this space.
• If NN, then the label of the closest training instance determines the classification output.
• If k-nearest neighbors (k-NN), then k-nearest neighbors need to vote for the decision.

54

k = 1 k = 3 k = 5

Image credit: Stanford CS231n

Demo available at http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Final Remarks (cont’d)

• If labels for each data is provided → Linear Discriminant Analysis (LDA)
• LDA is also known as Fisher’s discriminant analysis.
• Eigenface vs. Fisherface (IEEE Trans. PAMI 1997)

• If linear DR is not sufficient, and non-linear DR is of interest…
• lsomap, locally linear embedding (LLE), etc.

• t-distributed stochastic neighbor embedding (t-SNE) (by G. Hinton & L. van der Maaten)
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Clustering
• Unsup. vs. Sup. Dimension Reduction
• Training, testing, & validation
• Linear Classification
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What is PCA?
What are we trying to do?

• We want to find projections of data (i.e., direction vectors that we can 
project the data on to) that describe the maximum variation.

x

y
y

Axis that describes the 
largest variation (or scatter)
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What is LDA?
What are we trying to do?

• We want to find projections that separate the classes with the 
assumption of unimodal Gaussian modes.

• That is, to max. distance between two means while min. the variances

• =>will lead to minimize overall probability of error
y

x
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Case 1: A simple 2-class problem

• We want to maximize the distance between the projected means:
e.g., maximize

2
1 2µ µ− 
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= (wTµ1−wTµ2)2

= w (µ1 −µ2 ) (µ1 −µ2 ) w

= wTS w

T T

B

SB = (µ1 −µ2 )(µ1 −µ2)T

We want to maximize wTSBw where SB is the between class 
scatter matrix defined as:

NOTE: SB is rank 1. This will be useful later on to find closed form solution for 2-class LDA

Between Class Scatter Matrix SB

2
1 2(μ  - μ ) 
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We also want to minimize….

• The variance or scatter of the projected samples from each class (i.e. we 
want to make each class more compact or closer to its mean). The 
scatter from class 1 defined as s1 is given as

• Thus we want to minimize the scatter of class 1 and class 2 in projected 
space, i.e.

minimize the total scatter

1
2 2

1 1
1

( )
N

i
i

s x µ
=

= −∑  

2 2
1 2s s+ 
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Fisher Linear Discriminant Criterion Function

• Objective #1:  We want to maximize the between class scatter:

• Objective #2:  We want to minimize the within-class scatter.

• Thus we define our objective function J(w) as the following ratio that we 
want to maximize in order to achieve the above objectives:

2
1 2( )µ µ− 

2 2
1 2s s+ 
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LDA

• Thus we want to find the vector w that maximizes J(w).
• Let’s expand on scatter s1 & s2.

1
2 2

1 1
1
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Total Within-Class Scatter Matrix

• We want to minimize total within-class scatter. i.e.

• This is equivalent to minimize wTSww

2 2
1 2s s+ 
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Solving LDA

• Maximize

• We need to find the optimal w which will maximize the above ratio.

• What do we do now?

J (w) = wTS wB

wTS wW
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Some calculus….

66



LDA derivation

SBw −J (w)SWw = 0

SBw −λSWw = 0

SBw = λSWw
Generalized Eigenvalue problem

SW
-1SB w = λw

If Sw is non-singular and invertible.

We want to maximize J(w). This 
is equivalent to the derivation 
of the eigenvector w with the
largest eigenvalue. Why?
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Special Case LDA Solution for 2-Class Problems

• Lets replace what SB is for two classes and see how we can simplify to 
get a closed form solution.
(i.e., we would like to get a solution of the vector w for the 2-class case.)

• We know that in two class case, there is only 1 w vector. 
Lets use this knowledge cleverly…
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SB = (µ1 −µ2 )(µ1 −µ2 )T =mmT

| |
m(2)m m(N )m

|

|
S =mmT = m(1)m

| |

 







B

SB has only 1 linearly independent colum vector => Rank 1 matrix

SB is rank 1
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2-class LDA

• Basically in this generalized eigenvalue/eigenvector problem, the 
number of valid eigenvectors with non- zero eigenvalue is determined by 
the minimum rank of matrices SB and Sw.

• In this case, there is only 1 valid eigenvector with a non-zero
eigenvalue! (i.e., there is only one valid w vector solution.)

SB = (µ1 −µ2 )(µ1 −µ2 )T

SW
-1SB w = λw

i=1 j=1

Sw =∑∑ (x j −µi )(x j −µi )T
C Ni
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• Lets see and simplify the 2 class case:

which gives

(µ1−µ2 )T w = scalar = β

(µ1 −µ2 )β = λ SWw

(µ1−µ2)(µ1−µ2)T w =λSWw

2-class LDA (cont’d)
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(µ1 −µ2 )β = λSWw

2-Class LDA Closed Form Solution
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Multi-Class LDA

• What if we have more that 2 classes…what then?
• We need more than one w projection vector to provide separapability.

• Let’s look at our math derivations to see what changes.
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Multi-Class LDA (cont’d)

• Maximize

• Lets start with the Between-Class Scatter matrix for 2 class.

• However, SB now is the between class scatter matrix for many classes. We 
need to make all the class means furthest from each other. One way is to 
push them as far away from their global mean

J (w) = wTS wB

wTS wW

SB = (µ1 −µ2 )(µ1 −µ2)T

1
( )( )

cN
T

B i i
i

S µ µ µ µ
=

= − −∑
74
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If Sw is non-singular and invertible.

For C classes we have at most C-1 w vectors where we can project on to. Why?

Multi-Class LDA (cont’d)

• LDA solution:

Generalized Eigenvalue problem, the number of valid eigenvectors are bound by the
MINIMUM rank of matrix (SB,SW). In this case SB is typically lowest rank which is sum
of C outer-product matrices. (Since they subtract the global mean, the rank is C-1.

B wS w S wλ=

1
w BS S w wλ− =
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When Would LDA Fail?

• What happens when we deal with high-dimensional data.
• If more dimensions d than sample # N, then we run into more problems.

• Sw is singular. It will still have at most N-C non-zero eigenvalues.
N is the total number of samples from all classes, C is the number of classes.

1 1
( )( )

iNC
T

w j i j i
i j

S x xµ µ
= =

= − −∑∑

1
w BS S w wλ− =

1
( )( )

cN
T

B i i
i

S µ µ µ µ
=

= − −∑
C
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Fisherfaces

• Solution? Fisherfaces…..
• First do PCA and keep N-C eigenvectors. Project your data on to these N-C 

eigenvectors. (Sw will now be full rank = N-C not d.)
• Do LDA and compute the c-1 projections in this N-C dimensional subspace.
• PCA + LDA = Fisherfaces!

(read the famous PAMI paper of ‘Fisherfaces vs Eigenfaces’)
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What’s to Be Covered Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Clustering & Dimension Reduction
• Training, testing, & validation
• Linear Classification
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Hyperparameters in ML

• Recall that for k-NN, we need to determine the k value in advance. 
• What is the best k value?
• And, what is the best distance/similarity metric?
• Similarly, take PCA for example, what is the best reduced dimension number?

• Hyperparameters: choices about the learning model/algorithm of interest
• We need to determine such hyperparameters instead of learn them.
• Let’s see what we can do and cannot do…
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k = 1 k = 3 k = 5

Image credit: Stanford CS231n



How to Determine Hyperparameters?

• Idea #1
• Let’s say you are working on face recognition.
• You come up with your very own feature extraction/learning algorithm.
• You take a dataset to train your model, and select your hyperparameters

based on the resulting performance.

•

80

Dataset



How to Determine Hyperparameters? (cont’d)

• Idea #2
• Let’s say you are working on face recognition.
• You come up with your very own feature extraction/learning algorithm.
• For a dataset of interest, you split it into training and test sets.
• You train your model with possible hyperparameter choices, 

and select those work best on test set data.

•

81

Training set Test set



How to Determine Hyperparameters? (cont’d)

• Idea #3
• Let’s say you are working on face recognition.
• You come up with your very own feature extraction/learning algorithm.
• For the dataset of interest, it is split it into training, validation, and test sets.
• You train your model with possible hyperparameter choices, and select those 

work best on the validation set.

•
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Training set Test setValidation set

Training set Test setValidation set



How to Determine Hyperparameters? (cont’d)

• Idea #3.5
• What if only training and test sets are given, not the validation set?
• Cross-validation (or k-fold cross validation)

• Split the training set into k folds with a hyperparameter choice
• Keep 1 fold as validation set and the remaining k-1 folds for training
• After each of k folds is evaluated, report the average validation performance.
• Choose the hyperparameter(s) which result in the highest average validation 

performance. 

• Take a 4-fold cross-validation as an example…
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Training set Test set

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4

Fold 1 Test setFold 2 Fold 3 Fold 4



Minor Remarks on NN-based Methods

• In fact, k-NN (or even NN) is not of much interest in practice. Why?
• Choice of distance metrics might be an issue. See example below.
• Measuring distances in high-dimensional spaces might not be a good idea.
• Moreover, NN-based methods require lots of               and                              !

(That is why NN-based methods are viewed as data-driven approaches.)

84Image credit: Stanford CS231n

All three images have the same Euclidean distance to the original one.



What We Learned Today…

• From Probability to Bayes Decision Rule
• Brief Review of Linear Algebra & Linear System

• Unsupervised vs. Supervised Learning
• Clustering
• Dimension Reduction,
• Training, testing, & validation
• Linear Classification
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