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Stereo Matching

* For pixel xqy in one image, where is the corresponding point

X1 in another image?
e Stereo: two or more input views

* Based on the epipolar geometry, corresponding points lie on
the epipolar lines (next lectures...)

* A matching problem




Epipolar Geometry for Converging Cameras

* Still difficult

* Need to trace different epipolar lines for every point
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Image Rectification




Image Rectification

* Reproject image
planes onto a common
plane parallel to the
line between optical
centers

* Pixel motion is
horizontal after this
transformation A’

 Two homographies

(3x3 transform), one
for each image




Image Rectification

* [Loop and Zhang 1999]

Original image pair overlaid with Images transformed so that epipolar
several epipolar lines. lines are parallel.

Images rectified so that epipolar lines Final rectification that minimizes
are horizontal and aligned in vertical. horizontal distortions. (Shearing)

Loop and Zhang. Computing Rectifying Homographies for Stereo Vision. In CVPR 1999.



You don’t need to know image rectification now....

For the task of Stereo Matching in recent research, we
consider two images that are well-rectified.



Disparity Estimation

» After rectification, stereo matching becomes the disparity
estimation problem

 Disparity = horizontal displacement of corresponding points
in the two images

* Disparity of X =x; — xp




Disparity Estimation

SSD :Sum of Squared Distance

* The “hello world” algorithm: block matching
e Consider SSD as matching cost Winner take all (WTA)

d 0 1 2 3 33 59 60
SSD 100 90 88 88 12 77 85
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Disparity Estimation

* The “hello world” algorithm: block matching

e For each pixel in the left image
* For each disparity level
* For each pixel in window
« Compute matching cost
* Find disparity with minimum matching cost
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Disparity Estimation

* Reverse order of loops

e For each disparity in the left image
* For each pixel
* For each pixel in window
« Compute matching cost

* Find disparity with minimum matching cost at each pixel
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Disparity Estimation

* Block matching result

Ground-truth Window 5x5 After 3x3 median filter
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Depth from Disparity

Visible surface

w

optical axis

optical axis

baseline b

Disparity d = x; — xp
It can be derived that
)
PRV
Z

Disparity = O for distant points
Larger disparity for closer points



Components of a Stereo Vision System

Calibrate cameras

Rectify images

Compute disparity

Estimate depth



Components of a Stereo Vision System

 Compute disparity

Most stereo matching papers mainly focus on disparity estimation



More on Disparity Estimation

Typical pipeline

Matching cost

Local methods

e Cost-volume filtering
Global methods

Better disparity refinement

More challenges



Typical Stereo Pipeline

Block matching algorithm

Cost computation
Cost (support) aggregation
Disparity optimization

Disparity refinement

Method Matching cost Aggregation Optimization |
SSD (traditional) squared difference | square window WTA

S Hannan [o1] Cross-correlation (Squarc window, WIA
Nishihara [82] binarized filters square window WTA
Kass [63] filter banks -none- WTA
Fleet et al. [40] phase -none- phase-matching
Jones and Malik [57] filter banks -none- WTA
Kanade [58] absolute difference | square window WTA
Scharstein [95] gradient-based Gaussian WTA
Zabih and Woodfill [129] rank transform (square window) WTA
Cox et al. [32] histogram eq. -none- DP
Frohlinghaus and Buhmann [41] | wavelet phase -none- phase-matching
Birchfield and Tomasi [12] shifted abs. diff -none- DP

Marr and Poggio [73]
Prazdny [89]

Szeliski and Hinton [114]
Okutomi and Kanade [84]
Yang et al. [127]

Shah [103]

Boykov et al. [22

binary images
binary images
binary images
squared difference
cross-correlation
squared difference
thresh. abs. diff.

iterative aggregation
3D aggregation

iterative 3D aggregation
adaptive window
non-linear filtering
non-linear diffusion
connected-component

WTA

WTA

WTA

WTA

hier. WTA
regularization
WTA

Tao et al [117]

squared difference

Scharstein and Szeliski [97] robust sq. diff. iterative 3D aggregation | mean-field
Zitnick and Kanade [132] squared difference | iterative aggregation WTA
Veksler [124] abs. diff - avg. adaptive window WTA
Quam [90] cross-correlation -none- hier. warp
Bamard [6] squared difference | -none- SA
Geiger et al. [46] squared difference | shiftable window DP
Belhumeur [9] squared difference | -none- DP

Cox et al. [31] squared difference | -none- DP
Ishikawa and Geiger [55] squared difference | -none- graph cut
Roy and Cox [92] squared difference | -none- graph cut
Bobick and Intille [18] absolute difference | shiftable window DP
Boykov et al. [23] squared difference | -none- graph cut
Kolmogorov and Zabih [65] squared difference | -none- graph cut
Birchfield and Tomasi [14] shifted abs. diff. -none- GC + planes

(color segmentation)

WTA + regions

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 2002.
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Matching Cost

Squared difference (SD): (1, —1,)’
Absolute difference (AD): |1, — I,]
Normalized cross-correlation (NCC)
Zero-mean NCC (ZNCC)

Hierarchical mutual information (HMI)

Census cost

Truncated cost

e C = min(Cy, 7) >

Local binary pattern

Hirschmuller and Scharstein. Evaluation of stereo matching costs on images with radiometric differences. PAMI 2008.

—

00111010

hamming
distance

10111010
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Matching Cost

* Deep matching cost (MC-CNN)

Similarity score

| Fully-connected, Sigmoid |

| Fully-connected, ReLU |

| Fully-connected, ReLU |
| Fully-connected, ReLU |

| Concatenate |

| Convolution, ReLU I I Convolution, ReLLU

[ Convoluti.on, ReLU ] [ Convolut.i-on. ReLU
| |

| Convolution, ReLU Convolution, ReLLU

i i

Left input patch Righ input patch

bad 2.0 (%) Weight | s

Date Name Res| Avg | Au

MP:

nd: :

imo i

&

nom

4 04 i 84 |

0526/18 [ ] NOSS_ROB T H 5011 357
02/06/18 [] NOSS % H 5042 357
06/22117 [] LocalExp % H 5433 365
06/01/18 [[] NaN_ROB = H 5734 34
01/24/17 [[] 3DMST = H 5925 371
03/10/17 [ MC-CNN+TDSR & F 6356 5.45
05/12/16 [ ] PMSC % H 6717 3.46
10/19/16 [] LW-CNN % H 7.048 465
04/12/16 (] MeshStereoExt 3 H 7.089 4.41
1012117 [ FEN-D2DRR 3% H 7.2310 468
05/28/16 [ | APAP-Stereo T H 7.2611 5.43
031118 [[) SGM-Forest 3 H 73712 471
01/19/16 [ ] NTDE = H 74413 572
0531118 [ CBMV_ROB 3 H 7.6514 3.43
02/28/18 [ ] FDR % H 7.6915 5.41
11/28/18 [] MSFNetA % H 7.9616 6.21
10/20/18 [ ] Dense-CNN 3 H 7.9817 5.59
08/28/15 (] MC-CNN-act 3 H 8.0818 5.59
1110315 (] MC-CNN+RBS T H 8.4219 6.05
09/13/16 [] SNP-RSM % H 87520 5.46
1211117 [] OVOD T H 88721 474
01/21/16 (1) MCCNN_Layout 3 H 8.9422 553
01/26/16 [ ] MC-CNN-ist 5 H 94723 7.35

Snapshot from Middlebury v3

Zbontar and LeCun. Stereo matching by training a convolutional neural network to compare image patches.

Journal of Machine Learning Research. 2016.
https://github.com/jzbontar/mc-cnn
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https://github.com/jzbontar/mc-cnn

More on Disparity Estimation

e Local methods

e Cost-volume filtering



Cost-Volume Filtering

* |llustration of the matching cost

1\

M'"Vf : Raw cost

. ___—— Smoothed by box filter

Smoothed by bilateral filter

S m 4 Smoothed by guided filter

——" ™1 Ground-truth

Rhemann et al. Fast cost-volume filtering for visual correspondence and beyond. In CVPR 2011.
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Cost-Volume Filtering

* The cost spans a HXW XL volume

* Local cost aggregation can be regarded as filtering the
volume to obtain more reliable matching costs

e Choose O(1) edge-preserving filters so that the overall
complexity is regardless of the window size

* Easy to parallelize

Occlusion Detection,
Filling & Post-processing

Cost Volume Cost Volume — Disparity Sclection
Construction Filtering

Input Stereo Images

Slice smoothed with |
the guided filter |

(1) Occlusion Map  ( ii ) Final Disparity

K’T/\ Disparity Map

Rhemann et al. Fast cost-volume filtering for visual correspondence and beyond. In CVPR 2011. 22



Cost-Volume Filtering Gy 12

Error Maps

Rhemann et al. Fast cost-volume filtering for visual correspondence and beyond. In CVPR 2011.

Method Rank| Avg. |Avg. Runtime
Error (%) (ms)
Ours 9 5.55 65
12 5.80 16000
13 5.78 650
Ours using AdaptWeight [31]| 15 5.86 15000
AdaptWeight [31] 32 6.67 8550
Real-time GPU 66 9.82 1225
Reliability DP 69 10.7 187.8
DCB Grid [19] 76 10.9 05.4%
23




Cost-Volume Filtering

e Cost-volume filtering is a general framework and can be

applied to other discrete labeling problems
* Optical flow: labels are displacements
* Segmentation: labels are foreground/background

(a) Input images (b) Steinbriicker et al. [23] (c) LDOF [5]
(d) ACK-Prior [14] (e) Ours (f) Our flow

~ (a) Input image with (b) Our cutout
user interaction

Rhemann et al. Fast cost-volume filtering for visual correspondence and beyond. In CVPR 2011.

(c) Cutout using Graph Cuts
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More on Disparity Estimation

* Global methods
* Belief propagation
* Dynamic programming
e Graph cut



Global Methods

* A good stereo correspondence

* Match quality: each pixel finds a good match in the other image
* Smoothness: disparity usually changes smoothly

 Mathematically, we want to minimize:

E(d) = Z D(d,) + Az V(d, d,)
p p.q

* D, is the data term, which is the cost of assigning label d,, to pixel p.
D,, can be the raw cost or the aggregated cost.

* I/ is the smoothness term or discontinuity cost.

It measures the cost of assigning labels d,, and d; to two adjacent
pixels.



Global Methods

* Choice of the Smoothness Cost
* ConsiderVasV(d, — dg)
* Make E(d) non-smooth

* Optimizing E(d) is hard
* Non-smooth

* Many local minima
* Provably NP-hard

* Practical algorithms find approx.
minima
* Belief propagation, graph cut,
dynamic programming, ...

http://nghiaho.com/?page id=1366

Y

\J

Y

o 0 ifn=20
fln)= ~ Also
A otherwise

known as the Potts model.

fn)=Axmin(|n|, K)
Truncated linear model.

fn)=Axmin(n% K)
Truncated quadratic model.
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http://nghiaho.com/?page_id=1366

Algorithm Ava.

Belief Propagation

1GSM [155] 104 | ¢
TSGO [141] 134 | |
JSOSP+GCP [149] | 148 | |
KADI [164] 15.2 | 1
SSCBP [157] 176 | 1
ADCensus [82] 182 | 1
AdaptingBP [16] | 222 | 1

CoopRegion [39] | 22.2

|
CCRADAR [150] 268 | 1

PM-Forest [162] 272 |1

ROP [87] 287 | C

MultiRBF [129] 287 | 1

DoubleBP [34] 290 | )

QutlierConf [40] 300 | !

SegAgar [144] 302 | 1

CVW-RM [146] 304 |1

GC+lLocalExp [158] | 320 | 1

SOS [135] 350 | 1

SubPixSearch [109] | 354 |2

AdaptiveGF [127] 3H8 |1

. GcKuwaGrad [161] | 365 | 1

Snapshot from Middlebury v2 SurlaceStereo 711 IEER 1
SubPixDoubleBP [29] | 37.2 | 1

Yang et al. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. In CVPR 2006.
Yang et al. A constant-space belief propagation algorithm for stereo matching. In CVPR 2010.
Liang et al. Hardware-efficient belief propagation. In CVPR 2009.
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Graph Cut

e GC can also be used to minimize E(d) = ZD(dp) +AZ V(dy, dg)
1% D.q

Results from Taniai et al.

Taniai et al. Graph cut based continuous stereo matching using locally shared labels. In CVPR 2014.
Kolmogorov et al. What energy functions can be minimized via graph cuts? PAMI 2004

Boykov et al. Fast approximate energy minimization via graph cuts. In ICCV 1999. 29



More on Disparity Estimation

e Better disparity refinement



Disparity Refinement

 Left-right consistency check
* Compute disparity map D; for left image
e Compute disparity map Dp for right image
e Checkif D;(x,y) = Dr(x — D;(x,y),y)

Sty s S N S e

Left vie
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Disparity Refinement

* Hole filling
* F;, the disparity map filled by closest valid disparity from left
* Fp, the disparity map filled by closest valid disparity from right
* Final filled disparity map D = min(Fy, Fr) (pixel-wise minimum)
* (You need to handle the boundary, pad maximum??)

The above steps do not guarantee coherency between scanlines

32



wpye = g(f(p),1(q)

fip)—f
g = exp(= @@l

Disparity Refinement i

Denoting I(q) as the value at pixel ¢ in image I and
n = (2r + 1)? as the number of pixels in R(p), we express
° : : : : the value and weight elements for all pixels in R(p) as
Welghted med 1an fl lterl ng {(I(g), wpq)}- By sorting values in an ascending order, the
weighted median operator for pixel p returns a new pixel p*

and I(p) is replaced by I(p*). This process to get p* is

)

n

k
1
p* =mink s.t E Wpg = = (2)
=1

ﬂ
Bk

(a) left image (b) box agg.+LR check+hole-filling (c) median filtering of (b) (d) weighted median filtering of (b) (e) zoom-in

N

e

Ma et al. Constant time weighted median filtering for stereo matching and beyond. In ICCV 2013.
Zhang et al. 100+ times faster weighted median filter. In CVPR 2014. 33



Disparity Refinement

* Weighted median filtering

10
05 - e ® Box agg. onl);
¢ Box agg. + WM
= 9 # Cross agg. + WM
*:; g5 | A Non-local agg. + WM
s | MGuided agg. + WM
S8 A
75 - ® X O
7 ‘
- . - 0 0.5 1 1.5 2 2.5
(a) box agg. + LR check + hole-filling  (b) guided agg. + LR check + hole-filling CPU running time (seconds)
46ms, Err. 4.68 246ms, Err. 2.08 B
Ours and previous work | Avg. error | GPU time
NonLocalFilter [30] 5.487 n/a
Guided agg. + WM 5.50 S54ms
CostFilter [22] 5.551 65ms’
Cross agg. + WM 5.63 n/a
Non-local agg. + WM 6.04 n/a
Box agg. + WM 6.19 22ms
VariableCross [34] 7.60% n/a
(¢) weighted median filtering of (a) (d) weighted median filtering of (b)
134ms. Err. 1.66 334ms, Err. 1.62

Ma et al. Constant time weighted median filtering for stereo matching and beyond. In ICCV 2013. 34



More on Disparity Estimation

* More challenges



More Challenges

* |llumination invariance: most stereo algorithms assume the
corresponding points share the same color/intensity.
* This may not be true for specular reflection, transparent objects, ...

 Solution: use illumination invariant features or explicit
model the physics (reflection/transparency)

~mmmmm

.
[ y— ' - -‘w&" L ?, }
. . . d N il ’
= !
}i‘ " - ‘ é -g

(a) Leftimage  (b) Right image (c) ANCC [42] (d) BRIEF [29] (e) SIFT [28] (f) LSS [18] (g) DASC+LRP (h) Ground Truth

Xu et al. Linear time illumination invariant stereo matching. JCV 2016.
Kim et al. DASC: robust dense descriptor for multi-modal and multi-spectral correspondence estimation. PAMI 2017. 36



Benchmark

* For latest and greatest algorithms, check the following:
 Middlebury v3
e Middlebury v2 (still useful but no longer active)
 KITTI2012
 KITTI 2015
e ETH3D
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http://vision.middlebury.edu/stereo/eval3/
http://vision.middlebury.edu/stereo/eval/
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://www.eth3d.net/low_res_two_view

Application: Scene Analysis

» Potential application for visual disability or robots

i
.

Input: RGB image  Input: depth image EgoRetinal map Egomotion prediction

Hyun Soo Park, Jyh-Jing Hwang, Yedong Niu, and Jianbo Shi. Egocentric Future Localization. In CVPR 2016.
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Application: Synthetic Defocus

* A stereo algorithm tailored for synthetic defocus application

(a) Input stereo pair with cropped subregions of the right image

(c) SGM’s disparity and defocused image / subregions

Barron et al. Fast bilateral-space stereo for synthetic defocus. In CVPR 2015. 39



summary

Depth from disparity

Standard stereo matching pipeline

Stereo matching as a
e correspondence problem
* labeling problem
* testbed for edge-preserving filtering
e graph optimization problem

Real world challenges and applications



