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Epipolar Geometry: Basic Equation
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The Singularity Constraint

e"TF=0 Fe=0 detF=0 rankF=2

SVD from linearly computed F matrix (rank 3)
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Enforcing singularity!



Effect of enforcing singularity



The Minimum Case
— 7 Point Correspondences
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but F,+AF, not automatically rank 2



The Minimum Case
— Impose Rank 2

(obtain 1 or 3 solutions)

7pts F

det(F, +AFE,) =aA’ +a,A° +aA+a, =0 (cubicequation)



NOT Normalized 8-point Algorithm
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The Normalized 8-point Algorithm

Transform image to ~[-1,1]x[-1,1]
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Least squares yields good results (Hartley, PAMI'97)



The Normalized 8-point Algorithm

Or nomalization with the previous method:



The Normalized 8-point Algorithm

Objective
Given n > 8 image point correspondences {x; < X, }, determine the fundamental matrix F
such that x;TFx; = 0.

Algorithm

. o R . . . ~ ~/

(1) Normalization: Transform the image coordinates according to x; = Tx; and X; =
T’x/, where T and T’ are normalizing transformations consisting of a translation and
scaling.

(11) Find the fundamental matrix F corresponding to the matches %X; < X by

(a) Linear solution: Determine F from the singular vector corresponding to the
smallest singular value of A, where A is composed from the matches x; < )Ac;
as defined in (11.3).

(b) Constraint enforcement: Replace F by F' such that det ¥ = 0 using the SVD
(see section 11.1.1).

(iii) Denormalization: Set F = T’ TE'T. Matrix F is the fundamental matrix corresponding
to the original data x; < x/.




Geometric Distance

Gold standard
Sampson error
Symmetric epipolar distance



Gold Standard

Maximum Likelihood Estimation (= least-squares for
Gaussian noise)

Zd P +d(x,, %) subjectto XTFx=0

Initialize: normalized 8-point, (P,P‘) from F, reconstruct X;
Parameterize:
P=[110],P'=[M]t], X;
% =PX. % =P'X.

Minimize cost using Levenberg-Marquardt
(preferably sparse LM, see book)

(overparametrized)



Objective
Given n > 8 image point correspondences {x; < X/}, determine the Maximum Likelihood
estimate F of the fundamental matrix.

The MLE involves also solving for a set of subsidiary point correspondences {X; « X}, such
that i;TF&i = (0, and which minimizes

Zd X, X;) —I—d( ! A’)

Algorithm (Expensive Method)

(i) Compute an initial rank 2 estimate of F using a linear algorithm such as algorithm 11.1.
(i) Compute an initial estimate of the subsidiary variables {X;, X’} as follows:
(a) Choose camera matrices P = [I | 0] and P’ = [[e/] «F | €], where €’ is obtained

from F.
(b) From the correspondence x; « x/} and F determine an estimate of X; using the
triangulation method of chapter 12.

(¢) The correspondence consistent with F is obtained as x; = PXZ, .= P'X;.
(i11) Minimize the cost

Zd(xz,x )2 +d(x}, %5)?

over F and f(i, i = 1,...,n. The cost is minimized using the Levenberg—Marquardt
algorithm over 3n + 12 variables: 3n for the n. 3D points XE, and 12 for the camera
matrix P’ = M | t], with F = [t]M, and %; = PX;, X, = P'X,.




First-order Geometric Error (Sampson Error)

ZET (JJT)_le eTe (one eq./point

T T
N —=JJT scalar)

e=> X" Fx=0

3T =(xTFf +(xTF +(Fx) +(Fx);

where (Fxl-)]z- represents the square of the j-th entry of the vector Fx;

e'e Z X" Fx
JJ_T (x'T F)12 + (x'T F)i +(Fx); +(Fx);

(problem if some x is located at epipole)

advantage: no subsidiary variables required




Symmetric Epipolar Error
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Some experiments:




Some experiments:




Some experiments:
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Some experiments:
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Recommendations

* Do not use unnormalized algorithms

* Quick and easy to implement: 8-point
normalized

 Better: enforce rank-2 constraint during
minimization
 Best: Maximum Likelihood Estimation

(minimal parameterization, sparse
Implementation)



Automatic Computation of F

Interest points
Putative correspondences

RANSAC
Non-linear re-estimation of F

Al S

Guided matching
(repeat 4 and 5 until stable)



Automatic Computation of F

Objective Compute the fundamental matrix between two images.
Algorithm

(1) Interest points: Compute interest points in each image.
(i1) Putative correspondences: Compute a set of interest point matches based on proxim-
ity and similarity of their intensity neighbourhood.
(i11) RANSAC robust estimation: Repeat for N samples, where NV is determined adap-
tively as in algorithm 4.5(p121):

(a) Select a random sample O@COWespondences and compute the fundamental
matrix F as described in section 11.1.2. There will be one or three real solutions.

(b) Calculate the distance d; for each putative correspondence.

(¢) Compute the number of inliers consistent with F by the number of correspon-
dences for which d; < t pixels.

(d) If there are three real solutions for F the number of inliers is computed for each
solution, and the solution with most inliers retained.

Choose the F with the largest number of inliers. In the case of ties choose the solution
that has the lowest standard deviation of inliers.

(iv) Non-linear estimation: re-estimate F from all correspondences classified as inliers
by minimizing a cost function, e.g. (11.6), using the Levenberg—Marquardt algorithm
of section A6.2(p600). Sk F +dlx, %)

(v) Guided matching: Further interest point correspondences are now determined using
the estimated F to define a search strip about the epipolar line.

The last two steps can be iterated until the number of correspondences is stable.
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Interest Points

(e.g.Harris&Stephens 88; Shi&Tomasi 94)

Find points that differ as much as possible
from all neighboring points
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Interest Points

Select strongest features (e.g. 1000/image)



Interest Points

Evaluate NCC for all features with similar coordinates

e.g.0@ y)e[x—, x+ 3 |x[y -5, y+4

Keep mutual best matches

Still many wrong matches!




Interest Points

s
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Gives satisfying results
for small image motions



RANSAC

Step 1. Extract features
Step 2. Compute a set of potential matches

Step 3. do
Step 3.1 select minimal sample (i.e. 7 matches) (generate
Step 3.2 compute solution(s) for F hypothesis)
Step 3.3 determine inliers(verify hypothesis)

until I'(#inliers,#samples)<95%

Step 4. Compute F based on all inliers
Step 5. Look for additional matches by guided matching
Step 6. Refine F based on all correct matches



RANSAC

* Why choose 7-point algorithm instead of 8-point
algorithm?
* A rank 2 matrix is produced without enforcement
* The number of samples that must be tried in order to
ensure a high probability of the no outliers is
exponential in the size of the sample set
* Distance measure

* Reprojection error Zd +d X X )

X'T Fx

(x'T F)12 + (x'T F)i +(Fx); +(Fx);

* Sampson approximation )




Guided Matching

restrict search range to neighborhood of epipolar line
(1.5 pixels)

relax disparity restriction (along epipolar line)



geometric relations between two views is fully

described by recovered 3x3 matrix F



500 corners




188 matches : 89 outliers
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Degenerate Cases

* Degenerate cases
 Planar scene
* Pure rotation

* No unique solution
 Remaining DOF filled by noise
* Use simpler model (e.g. homography)

* Model selection (Torr et al., ICCV'98, Kanatani, Akaike)

 Compare H and F according to expected residual error
(compensate for model complexity)



Image Pair Rectification

simplify stereo matching
by warping the images

Apply projective transformation so that epipolar lines
correspond to horizontal scanlines

~—

map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image



Planar Rectification

(standard approach)

...........................................

~ image size

(calibrated)

Distortion minimization
(uncalibrated)

Bring two views
to standard stereo setup

(moves epipole to O0O)
(not possible when in/close to image)




Rectification

* Two steps:
* Mapping the epipolar to infinity
* Finding a projective transformation H of an image that maps
the epipole to a point at infinity

* Avoid distortion: better to have rigid transformation, to first-
order the neighborhood of x, may undergo rotation and
translation only

* Matching transformation
* Match the epiplolar lines

* Find a match pair that
HTl=H"-TI’



Mapping the Epipolar to Infinity

* Map the epipole to e=(f, 0, 1)’

* A good transform is 1 0 0]
G = 0 1 0
101

(2,9, )" = @,y 1 —a/f) = (L +z/f+..)y(L+2/f+..),1)7

0(z,y) | 1+2x/f 0
O(x,y) y/f  1+z/f = if x=y=0

* For an arbitrary x, and epipole e
 H=GRT: R: rotate to x-axis, T: translate to (f, 0, 1)7




Matching Transformation

e Target: to minimize Y d(Hx;, Hx})?

Corollary 11.4. Let J and J' be images with fundamental matrix F = [€'| .M, and let
H' be a projective transformation of J' mapping the epipole €' to the infinite point
(1,0,0)T. A transformation H of J matches H' if and only if H is of the form H = H,H,,
where Hy = H'M and H, is an affine transformation of the form (11.20).

a b c |
HA — O 1 0
00 1
* To solve a, b, c, minimize

S (ad; + bji + ¢ — &) + (5 — §)°

1
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Algorithm Outline

(i) Identify a seed set of image-to-image matches x; < x’ between the two images.
Seven points at least are needed, though more are preferable. It is possible to
find such matches by automatic means.

(ii) Compute the fundamental matrix F and find the epipoles e and €’ in the two
images.

(iii) Select a projective transformation H that maps the epipole €’ to the point at
infinity, (1,0,0)T. The method of section 11.12.1 gives good results.

(1iv) Find the matching projective transformation H that minimizes the least-squares
distance

> d(Hx;, H'x;). (11.22)

The method used is a linear method described in section 11.12.2.
(v) Resample the first image according to the projective transformation H and the
second image according to the projective transformation H’.









Polar Rectification

(Pollefeys et al. ICCV’99)

Polar re-parameterization around epipoles
Requires only (oriented) epipolar geometry
Preserve length of epipolar lines

Choose A6 so that no pixels are compressed

A

)

I

L

Works for all relative motions
Guarantees minimal image size



Polar Rectification: Example




Polar Rectification: Example




