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Outline

• Computation of the fundamental matrix F
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[Slides credit: Marc Pollefeys]



0Fxx'T 

separate known from unknown

0'''''' 333231232221131211  fyfxffyyfyxfyfxyfxxfx

   0,,,,,,,,1,,,',',',',','
T

333231232221131211 fffffffffyxyyyxyxyxxx

(data) (unknowns)

(linear)

0Af 

0f
1''''''

1'''''' 111111111111
















nnnnnnnnnnnn yxyyyxyxyxxx

yxyyyxyxyxxx



Epipolar Geometry: Basic Equation
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The Singularity Constraint

Enforcing singularity!



Effect of enforcing singularity
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one parameter family of solutions

but F1+lF2 not automatically rank 2

The Minimum Case 
– 7 Point Correspondences
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(obtain 1 or 3 solutions)

(cubic equation)

The Minimum Case 
– Impose Rank 2
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!
Orders of magnitude difference

Between column of data matrix

 least-squares yields poor results

NOT Normalized 8-point Algorithm



The Normalized 8-point Algorithm

Transform image to ~[-1,1]x[-1,1]
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Least squares yields good results (Hartley, PAMI´97)



The Normalized 8-point Algorithm

Or nomalization with the previous method:

(0, 0)
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The Normalized 8-point Algorithm
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Geometric Distance

•Gold standard

• Sampson error

• Symmetric epipolar distance



Maximum Likelihood Estimation
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(= least-squares for 

Gaussian noise)

0x̂F'x̂  subject to T 

iXt],|[MP'0],|[IP 

Parameterize:

Initialize: normalized 8-point, (P,P‘) from F, reconstruct Xi

iiii XP'x̂,PXx̂ 

Minimize cost using Levenberg-Marquardt
(preferably sparse LM, see book)

(overparametrized)

Gold Standard
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(Expensive Method)
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(problem if some x is located at epipole)

advantage: no subsidiary variables required

where 𝐹𝑥𝑖 𝑗
2 represents the square of the j-th entry of the vector Fxi

First-order Geometric Error (Sampson Error)
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Symmetric Epipolar Error



Some experiments:



Some experiments:



Some experiments:



Some experiments:
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(for all points!)

Residual error:



Recommendations

• Do not use unnormalized algorithms

• Quick and easy to implement: 8-point 
normalized

• Better: enforce rank-2 constraint during 
minimization

• Best: Maximum Likelihood Estimation
(minimal parameterization, sparse 
implementation)



Automatic Computation of F

1. Interest points

2. Putative correspondences

3. RANSAC 

4. Non-linear re-estimation of F

5. Guided matching

(repeat 4 and 5 until stable)



Automatic Computation of F
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homogeneous

edge

corner

(e.g.Harris&Stephens´88; Shi&Tomasi´94)

Find points that differ as much as possible 
from all neighboring points

Interest Points



Interest Points

Select strongest features (e.g. 1000/image)



Interest Points
Evaluate NCC for all features with similar coordinates

Keep mutual best matches

Still many wrong matches!
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Gives satisfying results 
for small image motions

Interest Points



RANSAC

Step 1. Extract features

Step 2. Compute a set of potential matches

Step 3. do
Step 3.1 select minimal sample (i.e. 7 matches)

Step 3.2 compute solution(s) for F

Step 3.3 determine inliers

until (#inliers,#samples)<95% 

Step 4. Compute F based on all inliers

Step 5. Look for additional matches by guided matching

Step 6. Refine F based on all correct matches

(generate 

hypothesis)

(verify hypothesis)





RANSAC

• Why choose 7-point algorithm instead of 8-point 
algorithm?
• A rank 2 matrix is produced without enforcement

• The number of samples that must be tried in order to 
ensure a high probability of the no outliers is 
exponential in the size of the sample set

• Distance measure
• Reprojection error

• Sampson approximation

34
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restrict search range to neighborhood of epipolar line 
(1.5 pixels)

relax disparity restriction (along epipolar line)

Guided Matching



geometric relations between two views is fully 

described by recovered 3x3 matrix F
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500 corners 500 corners
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188 matches 89 outliers

99 inliers 157 matches with
guided matching



Degenerate Cases

• Degenerate cases
• Planar scene

• Pure rotation

• No unique solution
• Remaining DOF filled by noise

• Use simpler model (e.g. homography)

• Model selection (Torr et al., ICCV´98, Kanatani, Akaike)

• Compare H and F according to expected residual error 
(compensate for model complexity)



simplify stereo matching 
by warping the images

Apply projective transformation so that epipolar lines
correspond to horizontal scanlines

e

e

map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image

Image Pair Rectification



Planar Rectification

Bring two views 
to standard stereo setup

(moves epipole to )

(not possible when in/close to image)

~ image size

(calibrated)

Distortion minimization
(uncalibrated)

(standard approach)



Rectification

• Two steps:
• Mapping the epipolar to infinity

• Finding a projective transformation H of an image that maps 
the epipole to a point at infinity

• Avoid distortion: better to have rigid transformation, to first-
order the neighborhood of x0 may undergo rotation and 
translation only

• Matching transformation
• Match the epiplolar lines

• Find a match pair that

H-Tl=H’-Tl’

42



Mapping the Epipolar to Infinity

• Map the epipole to e=(f, 0, 1)T

• A good transform is

• For an arbitrary x0 and epipole e
• H=GRT: R: rotate to x-axis, T: translate to (f, 0, 1)T
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=I if x=y=0



Matching Transformation

• Target: to minimize

• To solve a, b, c, minimize 
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Algorithm Outline
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Polar re-parameterization around epipoles

Requires only (oriented) epipolar geometry

Preserve length of epipolar lines

Choose  so that no pixels are compressed

original image rectified image

Polar Rectification
(Pollefeys et al. ICCV’99)

Works for all relative motions

Guarantees minimal image size



Polar Rectification: Example



Polar Rectification: Example


