Camera Calibration
 （Compute Camera Matrix P）

簡韶逸 Shao－Yi Chien
Department of Electrical Engineering
National Taiwan University

Fall 2018

Outline

- Camera calibration

[Slides credit: Marc Pollefeys]

Resectioning

$$
\mathrm{X}_{i} \leftrightarrow \mathrm{x}_{i} \quad \mathrm{P} ?
$$

Basic Equations

$$
\begin{aligned}
& \mathbf{x}_{i}=\mathbf{P X}_{i} \\
& {\left[\mathbf{x}_{i}\right] \times \mathbf{P} \mathbf{X}_{i}} \\
& {\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\
w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top} \\
-y_{i} \mathbf{X}_{i}^{\top} & x_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)=\mathbf{0}} \\
& {\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\
w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)=\mathbf{0}} \\
& \mathrm{Ap}=0
\end{aligned}
$$

Basic Equations

$\mathrm{Ap}=0$
minimal solution

P has 11 dof, 2 independent eq./points
$\Rightarrow 51 / 2$ correspondences needed (say 6)

Over-determined solution

$$
\begin{aligned}
& n \geq 6 \text { points } \\
& \text { minimize } \quad\|\mathrm{Ap}\| \text { subject to constraint } \\
& \quad\|\mathrm{p}\|=1 \\
& \text { or }\left\|\hat{\mathrm{p}}^{3}\right\|=1 \quad \mathrm{P}=\square \\
& \hat{\mathrm{p}}^{3}
\end{aligned}
$$

Degenerate Configurations

More complicate than 2D case
(i) Camera and points on a twisted cubic

(ii) Points lie on plane or single line passing through projection center

Data Normalization

Less obvious

(i) Simple, as before

(ii) Anisotropic scaling

Line Correspondences

Extend DLT to lines

$$
\begin{array}{ll}
\Pi=\mathrm{P}^{\mathrm{T}} 1_{i} & \text { (back-project line) } \\
1_{i}^{\mathrm{T}} \mathrm{PX}_{1 i} & 1_{i}^{\mathrm{T}} \mathrm{PX}_{2 i} \quad(2 \text { independent eq.) }
\end{array}
$$

Geometric Error

$$
\sum_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)^{2}
$$

$$
\min _{\mathrm{P}} \sum_{i} d\left(\mathbf{x}_{i}, \mathrm{P} \mathbf{X}_{i}\right)^{2}
$$

Gold Standard Algorithm

Objective

Given $n \geq 62 D$ to 2D point correspondences $\left\{X_{i} \leftrightarrow x_{i}{ }^{\prime}\right\}$, determine the Maximum Likelyhood Estimation of P
Algorithm
(i) Linear solution:
(a) Normalization: $\tilde{\mathrm{X}}_{i}=\mathrm{UX}_{i} \quad \tilde{\mathrm{x}}_{i}=\mathrm{Tx}_{i}$
(b) DLT:
(ii) Minimization of geometric error: using the linear estimate as a starting point minimize the geometric error:

$$
\min _{\mathrm{P}} \sum_{i} d\left(\tilde{\mathbf{x}}_{i}, \tilde{\mathrm{P}} \tilde{\mathbf{X}}_{i}\right)^{2}
$$

(iii) Denormalization: $\mathrm{P}=\mathrm{T}^{-1} \mathrm{P} \mathrm{U}$

Calibration Example

(i) Canny edge detection
(ii) Straight line fitting to the detected edges
(iii) Intersecting the lines to obtain the images corners
typically precision <1/10
(HZ rule of thumb: $5 n$ constraints for n unknowns

	f_{y}	f_{x} / f_{y}	skew	x_{0}	y_{0}	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Errors in the World

$$
\sum_{i} d\left(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i}\right)^{2} \quad \mathbf{x}_{i}=\mathrm{P} \hat{\mathrm{X}}_{i}
$$

Errors in the image and in the world

$$
\sum_{i=1}^{n} d_{\operatorname{Mah}}\left(\mathbf{x}_{i}, \mathrm{P} \widehat{\mathbf{X}}_{i}\right)^{2}+d_{\operatorname{Mah}}\left(\mathbf{X}_{i}, \widehat{\mathbf{X}}_{i}\right)^{2}
$$

Geometric Interpretation of Algebraic error

$$
\begin{aligned}
& \sum_{i}\left(\hat{w}_{i} d\left(x_{i}, \hat{x}_{i}\right)\right)^{2} \\
& \hat{w}_{i}\left(\hat{x}_{i}, \hat{y}_{i}, 1\right)=\mathrm{PX}_{i} \quad \hat{w}_{i}= \pm \| \hat{p}^{3} \mid \operatorname{depth}(\mathrm{X} ; \mathrm{P})
\end{aligned}
$$

$$
\text { therefore, if }\left\|\hat{p}^{3}\right\|=1 \text { then }
$$

$$
\hat{w}_{i} d\left(\mathrm{x}_{i}, \hat{\mathrm{x}}_{i}\right) \sim f d\left(\mathrm{X}_{i}, \hat{\mathrm{X}}_{i}\right)
$$

Estimation of Affine Camera

$$
\text { Last row }=(0,0,0,1)
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i} \mathbf{X}_{i}^{\top} & y_{i} \mathbf{X}_{i}^{\top} \\
w_{i} \mathbf{X}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i} \mathbf{X}_{i}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)=\mathbf{0}} \\
{\left[\begin{array}{cc}
\mathbf{0}^{\top} & -\mathbf{X}_{i}^{\top} \\
\mathbf{X}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\binom{\mathbf{P}^{1}}{\mathbf{P}^{2}}+\binom{y_{i}}{-x_{i}}=\mathbf{0}} \\
\|\mathbf{A} \mathbf{p}\|^{2}=\sum_{i}\left(x_{i}-\mathbf{P}^{1 \top} \mathbf{X}_{i}\right)^{2}+\left(y_{i}-\mathbf{P}^{2 \top} \mathbf{X}_{i}\right)^{2}=\sum_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)^{2}
\end{gathered}
$$

note that in this case algebraic error = geometric error

Gold Standard Algorithm

Objective

Given $n \geq 42 D$ to 2D point correspondences $\left\{X_{i} \leftrightarrow x_{i}{ }^{\prime}\right\}$, determine the Maximum Likelyhood Estimation of P (remember $\mathrm{P}^{3 \mathrm{~T}}=(0,0,0,1)$)
Algorithm
(i) Normalization: $\quad \tilde{\mathrm{X}}_{i}=\mathrm{UX}_{i} \quad \tilde{\mathrm{x}}_{i}=\mathrm{Tx}_{i}$
(ii) For each correspondence

$$
\begin{gathered}
{\left[\begin{array}{cc}
\mathbf{0}^{\top} & -\mathbf{X}_{i}^{\top} \\
\mathbf{X}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\binom{\mathbf{P}^{1}}{\mathbf{P}^{2}}+\binom{y_{i}}{-x_{i}}=\mathbf{0}} \\
\mathbf{A}_{8} \mathbf{p}_{8}=\mathbf{b}
\end{gathered}
$$

(iii) solution is

$$
\mathrm{p}_{8}=\mathrm{A}_{8}^{+} \mathrm{b}
$$

(iv) Denormalization: $\mathrm{P}=\mathrm{T}^{-1} \mathrm{P} \mathrm{U}$

Restricted Camera Estimation

Find best fit that satisfies

- skew s is zero
- pixels are square
- principal point is known
- complete camera matrix K is known

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

Minimize geometric error
\rightarrow impose constraint through parametrization
\rightarrow Image only $\mathbb{Q}^{9} \rightarrow \mathbb{Q}^{2 n}$, otherwise $\mathbb{Q}^{3 n+9} \rightarrow \mathbb{Q}^{5 n}$
Minimize algebraic error
\rightarrow assume map from param $q \rightarrow P=K[R \mid-R C]$, i.e. $p=g(q)$
\rightarrow minimize ||Ag(q)||

Reduced Measurement Matrix

One only has to work with 12×12 matrix, not $2 n \times 12$

$$
\begin{aligned}
& \|A p\|=p^{T} A^{T} A p=\|A \hat{A}\| \\
& A^{\top} A=\left(V D U^{\top}\right)\left(U D V^{\top}\right)=(V D)\left(D V^{\top}\right)=\hat{A}^{\top} \hat{A}
\end{aligned}
$$

Restricted Camera Estimation

Initialization

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

- Use general DLT
- Clamp values to desired values, e.g. $s=0, \alpha_{x}=\alpha_{y}$

Note: can sometimes cause big jump in error
Alternative initialization

- Use general DLT
- Impose soft constraints

$$
\sum_{i} d\left(\mathbf{x}_{i}, \mathrm{PX}_{i}\right)^{2}+w s^{2}+w\left(\alpha_{x}-\alpha_{y}\right)^{2}
$$

- gradually increase weights

Exterior Orientation

Calibrated camera, position and orientation unkown
\rightarrow Pose estimation
6 dof $\Rightarrow 3$ points minimal (4 solutions in general)

	f_{y}	f_{x} / f_{y}	skew	x_{0}	y_{0}	residual
algebraic	1633.4	1.0	0.0	371.21	293.63	0.601
geometric	1637.2	1.0	0.0	371.32	293.69	0.601

	f_{y}	f_{x} / f_{y}	skew	x_{0}	y_{0}	residual
linear	1673.3	1.0063	1.39	379.96	305.78	0.365
iterative	1675.5	1.0063	1.43	379.79	305.25	0.364

Covariance Estimation

ML residual error

$$
\epsilon_{\mathrm{res}}=\sigma(1-d / 2 n)^{1 / 2}
$$

$$
\epsilon_{\text {res }} \longleftrightarrow \sigma
$$

Example: $\mathrm{n}=197, \epsilon_{\text {res }}=0.365, \sigma=0.37$

Radial Distortion

short and long focal length
radial distortion

radial distortion

$$
(\tilde{x}, \tilde{y}, 1)^{\top}=[\mathrm{I} \mid \mathbf{0}] \mathbf{X}_{\mathrm{cam}}
$$

$$
\binom{x_{d}}{y_{d}}=L(\tilde{r})\binom{\tilde{x}}{\tilde{y}}
$$

\tilde{x}, \tilde{y} : non-distorted projection $x_{d}, y_{d}:$ distorted projection

Correction of Distortion

$$
\hat{x}=x_{c}+L(r)\left(x-x_{c}\right) \quad \hat{y}=y_{c}+L(r)\left(y-y_{c}\right)
$$

Choice of the distortion function and center

$$
L(r)=1+\kappa_{1} r+\kappa_{2} r^{2}+\kappa_{3} r^{3}+\ldots
$$

$$
\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots, x_{c}, y_{c}\right\}: \text { interior parameters }
$$

$$
\begin{gathered}
x=x_{o}+\left(x_{o}-c_{x}\right)\left(K_{1} r^{2}+K_{2} r^{4}+\ldots\right) \\
y=y_{o}+\left(y_{o}-c_{y}\right)\left(K_{1} r^{2}+K_{2} r^{4}+\ldots\right) \\
r=\left(x_{o}-c_{x}\right)^{2}+\left(y_{o}-c_{y}\right)^{2}
\end{gathered}
$$

Computing the parameters of the distortion function
(i) Minimize with additional unknowns
(ii) Straighten lines
(iii) ...

Correction of Distortion

	f_{y}	f_{x} / f_{y}	skew	x_{0}	y_{0}	residual
linear	1580.5	1.0044	0.75	377.53	299.12	0.179
iterative	1580.7	1.0044	0.70	377.42	299.02	0.179
After radial						
algebraic	1556.0	1.0000	0.00	372.42	291.86	0.381

Another Method of Calibration

- Notation

$$
s \widetilde{\mathbf{m}}=\mathbf{A}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \widetilde{\mathrm{M}} \quad \text { with } \mathbf{A}=\left[\begin{array}{ccc}
\alpha & c & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- Homography between the model plane and its image

$$
s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\mathbf{A}\left[\begin{array}{llll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
0 \\
1
\end{array}\right]=\mathbf{A}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

$$
s \widetilde{\mathbf{m}}=\mathbf{H} \widetilde{\mathbf{M}} \quad \text { with } \quad \mathbf{H}=\mathbf{A}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

Ref: Zhengyou Zhang, "Flexible camera calibration by viewing a plane from unknown orientations," ICCV1999.

Another Method of Calibration

- Constraints on the intrinsic parameters

$$
\left[\begin{array}{lll}
\mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3}
\end{array}\right]=\lambda \mathbf{A}\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{t}
\end{array}\right]
$$

\mathbf{r}_{1} and \mathbf{r}_{2} are orthonormal $\boldsymbol{\rightarrow}$

$$
\begin{aligned}
\mathbf{h}_{1}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{2} & =0 \\
\mathbf{h}_{1}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{1} & =\mathbf{h}_{2}^{T} \mathbf{A}^{-T} \mathbf{A}^{-1} \mathbf{h}_{2}
\end{aligned}
$$

Another Method of Calibration

- Close-form solution
- Let

$$
\begin{aligned}
\mathbf{B} & =\mathbf{A}^{-T} \mathbf{A}^{-1} \equiv\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{12} & B_{22} & B_{23} \\
B_{13} & B_{23} & B_{33}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{\alpha^{2}} & -\frac{c}{\alpha^{2} \beta} & \frac{c v_{0}-u_{0} \beta}{\alpha^{2} \beta} \\
-\frac{c}{\alpha^{2} \beta} & \frac{c^{2}}{\alpha^{2} \beta^{2}}+\frac{1}{\beta^{2}} & -\frac{c\left(c v_{0}-u_{0} \beta\right)}{\alpha^{2} \beta^{2}}-\frac{v_{0}}{\beta^{2}} \\
\frac{c\left(v_{0}-u_{0} \beta\right.}{\alpha^{2} \beta} & -\frac{c\left(c v_{0}-u_{0} \beta\right)}{\alpha^{2} \beta^{2}}-\frac{v_{0}}{\beta^{2}} & \frac{\left(c v_{0}-u_{0} \beta\right)^{2}}{\alpha^{2} \beta^{2}}+\frac{v_{0}}{\beta^{2}}+1
\end{array}\right]
\end{aligned}
$$

$\mathbf{h}^{T} \mathbf{v}^{T} \mathbf{b}=\left[B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}\right]^{T}$ the $i^{\text {th }}$ column vector of \mathbf{H} be $\mathbf{h}_{i}=\left[h_{i 1}, h_{i 2}, h_{i 3}\right]^{T}$

$$
\begin{aligned}
& \mathbf{v}_{i j}=\left[h_{i 1} h_{j 1}, h_{i 1} h_{j 2}+h_{i 2} h_{j 1}, h_{i 2} h_{j 2},\right. \\
& \left.\quad h_{i 3} h_{j 1}+h_{i 1} h_{j 3}, h_{i 3} h_{j 2}+h_{i 2} h_{j 3}, h_{i 3} h_{j 3}\right]^{T}
\end{aligned}
$$

Another Method of Calibration

- Close-form solution
- From the two constraints on the intrinsic parameters

$$
\begin{gathered}
{\left[\begin{array}{c}
\mathbf{v}_{12}^{T} \\
\left(\mathbf{v}_{11}-\mathbf{v}_{22}\right)^{T}
\end{array}\right] \mathbf{b}=\mathbf{0}} \\
\mathbf{V b}=\mathbf{0}
\end{gathered}
$$

- \mathbf{V} is a $2 n \times 6$ matrix, if $n \geq 3$, we will have in general a unique solution \mathbf{b} defined up to a scale factor. Once \mathbf{b} is estimated, we can compute the camera intrinsic matrix A.

Calibration Procedure

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Calibration Procedure

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

Calibration Procedure

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

Calibration Procedure

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

- If the location of the corners are not correct \rightarrow adjust radial distortion manually

Calibration Procedure

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

Calibration Procedure

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html\#examples

