Projective Geometry

簡韶逸 Shao－Yi Chien
Department of Electrical Engineering
National Taiwan University

Fall 2018

Outline

- Projective 2D geometry
- Projective 3D geometry

[Slides credit: Marc Pollefeys]

Projective 2D Geometry

- Points, lines \& conics
- Transformations \& invariants

- 1D projective geometry and the Cross-ratio

Homogeneous Coordinates

- Homogeneous representation of lines

$$
\begin{aligned}
& a x+b y+c=0 \quad(a, b, c)^{\top} \\
& (k a) x+(k b) y+k c=0, \forall k \neq 0 \quad(a, b, c)^{\top} \sim k(a, b, c)^{\top}
\end{aligned}
$$

equivalence class of vectors, any vector is representative

- Homogeneous representation of points

$$
\begin{aligned}
& \mathrm{x}=(x, y)^{\top} \text { on } \mathrm{l}=(a, b, c)^{\top} \text { if and only if } a x+b y+c=0 \\
& (x, y, 1)(a, b, c)^{\top}=(x, y, 1) 1=0 \quad(x, y, 1)^{\top} \sim k(x, y, 1)^{\top}, \forall k \neq 0
\end{aligned}
$$

The point x lies on the line I if and only if $\mathrm{x}^{\top}|=|^{\top} x=0$
Homogeneous coordinates $\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ but only 2DOF Inhomogeneous coordinates $(x, y)^{\top}$
The point $\mathrm{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\mathrm{T}}$ represent the point $\left(x_{1} / x_{3}, x_{2} / x_{3}\right)^{\mathrm{T}}$ in \mathbb{R}^{2}

Points and Lines

- Intersections of lines

The intersection of two lines 1 and l^{\prime} is $x=1 \times l^{\prime}$

- Line joining two points

The line through two points x and x^{\prime} is $1=\mathrm{x} \times \mathrm{x}^{\prime}$

Example

Ideal Points and the Line at Infinity

- Intersections of parallel lines

$$
\mathrm{l}=(a, b, c)^{\top} \text { and } \mathrm{l}^{\prime}=\left(a, b, c^{\prime}\right)^{\top} \quad \mathrm{l} \times \mathrm{l}^{\prime}=(b,-a, 0)^{\top}
$$

Example

Ideal points
$\left(x_{1}, x_{2}, 0\right)^{\top}$
Line at infinity
$1_{\infty}=(0,0,1)^{\top}$

$$
\begin{array}{ll}
\mathbf{P}^{2}=\mathbf{R}^{2} \cup 1_{\infty} & \begin{array}{l}
\text { Note that in } \mathbf{P}^{2} \text { there is no distinction } \\
\text { between ideal points and others }
\end{array}
\end{array}
$$

A Model for the Projective Plane

exactly one line through two points
exaclty one point at intersection of two lines

Duality

$$
\begin{array}{ccc}
\mathrm{x} & \longleftrightarrow & 1 \\
\mathrm{x}^{\top} \mathrm{l}=0 & \longleftrightarrow & 1^{\top} \mathrm{x}=0 \\
\mathrm{x}=\mathrm{l} \times \mathrm{l}^{\prime} & \longleftrightarrow & 1=\mathrm{x} \times \mathrm{x}^{\prime}
\end{array}
$$

- Duality principle:

To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem

Conics

Curve described by $2^{\text {nd-degree equation in the plane }}$

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

or homogenized $x \mapsto x_{1} / x_{3}, y \mapsto x^{2} / x_{3}$

$$
a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+d x_{1} x_{3}+e x_{2} x_{3}+f x_{3}^{2}=0
$$

or in matrix form

$$
\mathbf{x}^{\top} \mathbf{C} \mathbf{x}=0 \text { with } \mathbf{C}=\left[\begin{array}{ccc}
a & b / 2 & d / 2 \\
b / 2 & c & e / 2 \\
d / 2 & e / 2 & f
\end{array}\right]
$$

5DOF: $\{a: b: c: d: e: f\}$

Five Points Define a Conic

For each point the conic passes through

$$
a x_{i}^{2}+b x_{i} y_{i}+c y_{i}^{2}+d x_{i}+e y_{i}+f=0
$$

or

$$
\left(x_{i}^{2}, x_{i} y_{i}, y_{i}^{2}, x_{i}, y_{i}, f\right) \mathbf{c}=0 \quad \mathbf{c}=(a, b, c, d, e, f)^{\top}
$$

stacking constraints yields

$$
\left[\begin{array}{llllll}
x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\
x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\
x_{3}^{2} & x_{3} y_{3} & y_{3}^{2} & x_{3} & y_{3} & 1 \\
x_{4}^{2} & x_{4} y_{4} & y_{4}^{2} & x_{4} & y_{4} & 1 \\
x_{5}^{2} & x_{5} y_{5} & y_{5}^{2} & x_{5} & y_{5} & 1
\end{array}\right] \mathbf{c}=0
$$

Tangent Lines to Conics

The line I tangent to \mathbf{C} at point x on \mathbf{C} is given by $\mathrm{I}=\mathbf{C x}$

Dual Conics

A line tangent to the conic \mathbf{C} satisfies $1^{\top} \mathbf{C}^{*} 1=0$

In general (C full rank): $\quad \mathbf{C}^{*}=\mathbf{C}^{-1}$

Dual conics = line conics = conic envelopes

Projective Transformations

Definition:

A projectivity is an invertible mapping h from P^{2} to itself such that three points x_{1}, x_{2}, x_{3} lie on the same line if and only if $h\left(\mathrm{x}_{1}\right), h\left(\mathrm{x}_{2}\right), h\left(\mathrm{x}_{3}\right)$ do.

Theorem:
A mapping $h: \mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$ is a projectivity if and only if there exist a non-singular 3×3 matrix \mathbf{H} such that for any point in P^{2} reprented by a vector x it is true that $h(\mathrm{x})=\mathrm{H} \mathrm{x}$

Definition: Projective transformation

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { or } \quad \begin{aligned}
& \mathrm{x}^{\prime}=\mathbf{H x} \\
& 8 \mathrm{DOF}
\end{aligned}
$$

projectivity=collineation=projective transformation=homography

Mapping between Planes

central projection may be expressed by $\mathrm{x}^{\prime}=\mathrm{Hx}$ (application of theorem)

Removing Projective Distortion

select four points in a plane with know coordinates

$$
\begin{aligned}
& x^{\prime}=\frac{x_{1}^{\prime}}{x_{3}^{\prime}}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \quad y^{\prime}=\frac{x_{2}^{\prime}}{x_{3}^{\prime}}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}} \\
& x^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{11} x+h_{12} y+h_{13} \quad \text { (linear in } h_{i j} \text {) } \\
& y^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{21} x+h_{22} y+h_{23}
\end{aligned}
$$

(2 constraints/point, 8DOF $\Rightarrow 4$ points needed)
Remark: no calibration at all necessary

More Examples

Transformation of Lines and Conics

For a point transformation

$$
x^{\prime}=\mathbf{H x}
$$

Transformation for lines

$$
l^{\prime}=\mathbf{H}^{-\top} 1
$$

Transformation for conics

$$
\mathbf{C}^{\prime}=\mathbf{H}^{-\top} \mathbf{C H}^{-1}
$$

Transformation for dual conics

$$
\mathbf{C}^{\prime *}=\mathbf{H C}^{*} \mathbf{H}^{\top}
$$

A Hierarchy of Transformations

- Projective linear group
- Affine group (last row $(0,0,1)$)
- Euclidean group (upper left 2×2 orthogonal)
- Oriented Euclidean group (upper left 2×2 det 1)

Alternative, characterize transformation in terms of elements or quantities that are preserved or invariant
e.g. Euclidean transformations leave distances unchanged

Similarity

Affine

Projective

Classi:lsonetries

$\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right)=\left[\begin{array}{ccc}\varepsilon \cos \theta & -\sin \theta & t_{x} \\ \varepsilon \sin \theta & \cos \theta & t_{y} \\ 0 & 0 & 1\end{array}\right]\left(\begin{array}{l}x \\ y \\ 1\end{array}\right) \quad \varepsilon= \pm 1$
orientation preserving:
$\varepsilon=1$
$\varepsilon=-1$

$$
\mathrm{x}^{\prime}=\mathbf{H}_{E} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
$$

3DOF (1 rotation, 2 translation), can be computed from 2 point correspondences special cases: pure rotation, pure translation

Invariants: length, angle, area

Class II: Similarities

$$
\begin{aligned}
&\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \\
& \mathrm{x}^{\prime}=\mathbf{H}_{S} \mathrm{x}=\left[\begin{array}{cc}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}
\end{aligned}
$$

4DOF (1 scale, 1 rotation, 2 translation)), can be computed from 2 point correspondences also know as equi-form (shape preserving) metric structure = structure up to similarity (in literature)
Invariants: ratios of length, angle, ratios of areas, parallel lines

Class III: Affine Transformations

$$
\begin{array}{ll}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right) & =\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
\mathrm{x}^{\prime}=\mathbf{H}_{A} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right] \mathrm{x} & \substack{\text { rotition } \\
\text { re }} \\
\mathbf{A}=\mathbf{R}(\theta) \mathbf{R}(-\phi) \mathbf{D R}(\phi) & \mathbf{D}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
\end{array}
$$

6DOF (2 scale, 2 rotation, 2 translation), can be computed from 3 point correspondences non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths, ratios of areas

Class VI: Projective Transformations

$$
\mathrm{x}^{\prime}=\mathbf{H}_{P} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right] \mathrm{x} \quad \mathrm{v}=\left(v_{1}, v_{2}\right)^{\top}
$$

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) can be computed from 4 point correspondences
Action non-homogeneous over the plane
Invariants: cross-ratio of four points on a line, (ratio of ratio)

Action of Affinities and Projectivities on Line at Infinity

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
0^{\top} & v
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathbf{A}\binom{x_{1}}{x_{2}}}{0}
$$

Line at infinity stays at infinity, but points move along line

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=\binom{\mathbf{A}\binom{x_{1}}{x_{2}}}{v_{1} x_{1}+v_{2} x_{2}}
$$

Line at infinity becomes finite, allows to observe vanishing points, horizon

Decomposition of Projective Transformations

$$
\begin{aligned}
& \mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P}=\left[\begin{array}{ll}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{K} & 0 \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & 0 \\
\mathrm{v}^{\top} & v
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right] \\
& \text { A: Amilaritity } \\
& \text { P: Projective } \\
& \text { decomposition unique (if chosen } \mathrm{s}>0 \text {) } \quad \mathbf{A}=s \mathbf{R} \mathbf{K}+\mathrm{tv}^{\top}
\end{aligned}
$$

\mathbf{K} upper-triangular, $\operatorname{det} \mathbf{K}=1$
Example:

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{ccc}
1.707 & 0.586 & 1.0 \\
2.707 & 8.242 & 2.0 \\
1.0 & 2.0 & 1.0
\end{array}\right] \\
\mathbf{H} & =\left[\begin{array}{ccc}
2 \cos 45^{\circ} & -2 \sin 45^{\circ} & 1.0 \\
2 \sin 45^{\circ} & 2 \cos 45^{\circ} & 2.0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0.5 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

Summary of Transformations

Invariant Properties
Projective $\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}\end{array}\right]$

Adfof
6dof

a_{21} \& a_{22} \& t_{y}

0 \& 0 \& 1\end{array}\right]\)

Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Similarity $\left[\begin{array}{l}\text { Parallellism, ratio of areas, } \\
\text { ratio of lengths on parallel } \\
\text { lines (e.g midpoints), linear } \\
\text { combinations of vectors } \\
\text { (centroids). } \\
\text { The line at infinity } \mathrm{I}_{\infty}\end{array}\right.$
$\left.\begin{array}{cccc}s r_{21} & s r_{12} & t_{x} \\
0 & 0 & 1\end{array}\right]$

Ratios of lengths, angles.
The circular points \mathbf{I}, J

3dof

Number of Invariants?

The number of functional invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation
e.g. configuration of 4 points in general position has 8 dof ($2 / \mathrm{pt}$) and so 4 similarity, 2 affinity and zero projective invariants

Projective Geometry of 1D

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)^{\top} \quad x_{2}=0 \\
& \overline{\mathrm{x}}^{\prime}=\mathbf{H}_{2 \times 2} \overline{\mathrm{x}} \quad 3 \mathrm{DOF}(2 \times 2-1)
\end{aligned}
$$

The cross ratio

$$
\operatorname{Cross}\left(\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}, \overline{\mathrm{x}}_{3}, \overline{\mathrm{x}}_{4}\right)=\frac{\left|\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}\right|\left|\overline{\mathrm{x}}_{3}, \overline{\mathrm{x}}_{4}\right|}{\left|\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{3}\right|\left|\overline{\mathrm{x}}_{2}, \overline{\mathrm{x}}_{4}\right|} \quad \quad\left|\overline{\mathrm{x}}_{i}, \overline{\mathrm{x}}_{j}\right|=\operatorname{det}\left[\begin{array}{cc}
x_{i 1} & x_{j 1} \\
x_{i 2} & x_{j 2}
\end{array}\right]
$$

Invariant under projective transformations

Recovering Metric and Affine Properties from Images

- Parallelism
- Parallel length ratios
- Angles
- Length ratios

The Line at Infinity

$$
1_{\infty}^{\prime}=\mathbf{H}_{A}^{-\top} 1_{\infty}=\left[\begin{array}{cc}
\mathbf{A}^{-\top} & 0 \\
-\mathbf{A t} & 1
\end{array}\right]\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=1_{\infty}
$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

Affine Properties from Images

Affine Rectification

Distance Ratios

The Circular Points

$$
\begin{gathered}
\mathrm{I}=\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right) \quad \mathrm{J}=\left(\begin{array}{c}
1 \\
-i \\
0
\end{array}\right) \\
\mathrm{I}^{\prime}=\mathbf{H}_{S} \mathrm{I}=\left[\begin{array}{ccc}
s \cos \theta & -s \sin \theta & t_{x} \\
s \sin \theta & s \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)=s e^{i \theta}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)=\mathrm{I}
\end{gathered}
$$

The circular points I, J are fixed points under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

The Circular Points

"circular points"

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{2}+d x_{1} x_{3}+e x_{2} x_{3}+f x_{3}^{2}=0 \\
x_{3}=0
\end{gathered}
$$

$$
x_{1}^{2}+x_{2}^{2}=0
$$

$$
\mathrm{I}=(1, i, 0)^{\top}
$$

$$
\mathbf{J}=(1,-i, 0)^{\top}
$$

Algebraically, encodes orthogonal directions

$$
\mathrm{I}=(1,0,0)^{\top}+i(0,1,0)^{\top}
$$

Conic dual to the Circular Points

$$
\begin{aligned}
\mathbf{C}_{\infty}^{*} & =\mathrm{IJ}^{\top}+\mathrm{JI}^{\top}
\end{aligned} \quad \mathbf{C}_{\infty}^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The dual conic \mathbf{C}_{∞}^{*} is fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Angles

Euclidean: $\quad 1=\left(l_{1}, l_{2}, l_{3}\right)^{\top} \quad \mathrm{m}=\left(m_{1}, m_{2}, m_{3}\right)^{\top}$

$$
\cos \theta=\frac{l_{1} m_{1}+l_{2} m_{2}}{\sqrt{\left(l_{1}^{2}+l_{2}^{2}\right)\left(m_{1}^{2}+m_{2}^{2}\right)}}
$$

Projective: $\cos \theta=\frac{1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}}{\sqrt{\left(\mathrm{l}^{\top} \mathbf{C}_{\infty}^{*} 1\right)\left(\mathrm{m}^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}\right)}}$
(This equation is Invariant to projective transform)
$1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}=0$ If orthogonal

Length Ratios

$$
\frac{d(b, c)}{d(a, c)}=\frac{\sin \alpha}{\sin \beta}
$$

$\cos \alpha$ and $\cos \beta$ can be derived with the equations in the previous page

Metric Properties from Images

$$
\begin{aligned}
\mathbf{C}_{\infty}^{* \prime} & =\left(\mathbf{H}_{P} \mathbf{H}_{A} \mathbf{H}_{S}\right) \mathbf{C}_{\infty}^{*}\left(\mathbf{H}_{P} \mathbf{H}_{A} \mathbf{H}_{S}\right)^{\top} \\
& =\left(\mathbf{H}_{P} \mathbf{H}_{A}\right) \mathbf{H}_{S} \mathbf{C}_{\infty}^{*} \mathbf{H}_{S}^{\top}\left(\mathbf{H}_{P} \mathbf{H}_{A}\right)^{\top} \\
& =\left(\mathbf{H}_{P} \mathbf{H}_{A}\right) \mathbf{C}_{\infty}^{*}\left(\mathbf{H}_{P} \mathbf{H}_{A}\right)^{\top} \\
& =\left[\begin{array}{cc}
\mathbf{K} \mathbf{K}^{\top} & \mathbf{K}^{\top} \mathbf{v} \\
\mathbf{v}^{\top} \mathbf{K} & \mathbf{v}^{\top} \mathbf{v}
\end{array}\right]
\end{aligned}
$$

Rectifying transformation from SVD

$$
\mathbf{C}_{\infty}^{* \prime}=\mathbf{U}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{U}^{\top} \quad \mathbf{H}=\mathbf{U}
$$

Metric from Affine

Suppose an image has been affinely rectified ($\mathbf{v = 0}$)

$$
\begin{aligned}
& \left(\begin{array}{lll}
l_{1}^{\prime} & l_{2}^{\prime} & l_{3}^{\prime}
\end{array}\right)\left[\begin{array}{cc}
\mathbf{K K}^{\top} & 0 \\
0 & 0
\end{array}\right]\left(\begin{array}{l}
m_{1}^{\prime} \\
m_{2}^{\prime} \\
m_{3}^{\prime}
\end{array}\right)=0 \\
& \left(l_{1}^{\prime} m_{1}^{\prime}, l_{1}^{\prime} m_{2}^{\prime}+l_{2}^{\prime} m_{1}^{\prime}, l_{2}^{\prime} m_{2}^{\prime}\right)\left(k_{11}^{2}+k_{12}^{2}, k_{11} k_{12}, k_{22}^{2}\right)^{\top}=0
\end{aligned}
$$

Metric from Projective

$$
\begin{aligned}
& 1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}=0 \quad\left(\begin{array}{lll}
l_{1}^{\prime} & l_{2}^{\prime} & l_{3}^{\prime}
\end{array}\right)\left[\begin{array}{cc}
\mathbf{K} \mathbf{K}^{\top} & \mathbf{K}^{\top} \mathrm{v} \\
\mathrm{v}^{\top} \mathbf{K} & \mathrm{v}^{\top} \mathrm{v}
\end{array}\right]\left(\begin{array}{l}
m_{1}^{\prime} \\
m_{2}^{\prime} \\
m_{3}^{\prime}
\end{array}\right)=0 \\
& \left(l_{1}^{\prime} m_{1}^{\prime} 0.5\left(l_{1}^{\prime} m_{2}^{\prime}+l_{2}^{\prime} m_{1}^{\prime}\right), l_{2}^{\prime} m_{2}^{\prime}, 0.5\left(l_{1}^{\prime} m_{3}^{\prime}+l_{3}^{\prime} m_{1}^{\prime}\right), 0.5\left(l_{2}^{\prime} m_{3}^{\prime}+l_{3}^{\prime} m_{2}^{\prime}\right), l_{3}^{\prime} m_{3}^{\prime}\right) \mathrm{c}=0 \\
& \mathbf{c}=(a, b, c, d, e, f)^{\mathrm{T}}
\end{aligned}
$$

Projective 3D Geometry

- Points, lines, planes and quadrics
- Transformations

- $\Pi_{\infty}, \omega_{\infty}$ and Ω_{∞}

3D Points

3D point

$$
\begin{aligned}
& (X, Y, Z)^{\top} \text { in } \mathbf{R}^{3} \\
& \mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\top} \text { in } \mathbf{P}^{3}
\end{aligned}
$$

$$
\mathrm{X}=\left(\frac{X_{1}}{X_{4}}, \frac{X_{2}}{X_{4}}, \frac{X_{3}}{X_{4}}, 1\right)^{\top}=(X, Y, Z, 1)^{\top} \quad\left(X_{4} \neq 0\right)
$$

projective transformation

$$
X^{\prime}=\mathbf{H X} \quad(4 \times 4-1=15 \text { dof })
$$

Dual: points \leftrightarrow planes, lines \leftrightarrow lines

Planes

3D plane

$$
\begin{aligned}
& \pi_{1} X+\pi_{2} Y+\pi_{3} Z+\pi_{4}=0 \\
& \pi_{1} X_{1}+\pi_{2} X_{2}+\pi_{3} X_{3}+\pi_{4} X_{4}=0 \\
& \pi^{\top} X=0
\end{aligned}
$$

Euclidean representation

$$
\begin{array}{lll}
\mathrm{n} . \tilde{\mathrm{X}}+d=0 & \mathrm{n}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)^{\top} & \tilde{\mathrm{X}}=(X, Y, Z)^{\top} \\
& \pi_{4}=d & X_{4}=1
\end{array}
$$

Planes from Points

Solve π from $\mathrm{X}_{1}^{\top} \pi=0, \mathrm{X}_{2}^{\top} \pi=0$ and $\mathrm{X}_{3}^{\top} \pi=0$

$$
\left[\begin{array}{l}
X_{1}^{\top} \\
X_{2}^{\top} \\
X_{3}^{\top}
\end{array}\right] \pi=0 \quad \text { (solve } \pi \text { as right nullspace of }\left[\begin{array}{l}
X_{1}^{\top} \\
X_{2}^{\top} \\
X_{3}^{\top}
\end{array}\right] \text {) }
$$

Or implicitly from coplanarity condition

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccc}
X_{1} & \left(X_{1}\right)_{1} & \left(X_{2}\right)_{1} & \left(X_{3}\right)_{1} \\
X_{2} & \left(X_{1}\right)_{2} & \left(X_{2}\right)_{2} & \left(X_{3}\right)_{2} \\
X_{3} & \left(X_{1}\right)_{3} & \left(X_{2}\right)_{3} & \left(X_{3}\right)_{3} \\
X_{4} & \left(X_{1}\right)_{4} & \left(X_{2}\right)_{4} & \left(X_{3}\right)_{4}
\end{array}\right]=0 \\
& X_{1} D_{234}-X_{2} D_{134}+X_{3} D_{124}-X_{4} D_{123}=0 \\
& \pi=\left(D_{234},-D_{134}, D_{124},-D_{123}\right)^{\mathrm{T}}
\end{aligned}
$$

Points from Planes

Solve X from $\pi_{1}^{\top} \mathrm{X}=0, \pi_{2}^{\top} \mathrm{X}=0$ and $\pi_{3}^{\top} \mathrm{X}=0$

$$
\left[\begin{array}{l}
\pi_{1}^{\top} \\
\pi_{2}^{\top} \\
\pi_{3}^{\top}
\end{array}\right] \mathrm{X}=0 \text { (solve } \mathrm{X} \text { as right nullspace of }\left[\begin{array}{l}
\pi_{1}^{\top} \\
\pi_{2}^{\top} \\
\pi_{3}^{\top}
\end{array}\right] \text {, }
$$

Points and Planes

- Projective transformation

Under the point transformation $\boldsymbol{X}^{\prime}=H \boldsymbol{X}$, a plane transforms as $\boldsymbol{\pi}^{\prime}=H^{-T} \boldsymbol{\pi}$

- Parametrized points on a plane

Representing a plane $\pi=(a, b, c, d)^{\top}$ by its span
$\mathrm{X}=\mathbf{M} \mathrm{x} \quad \mathrm{x}$ is a 3 -vector parameter (a point on the projective plane)

$$
\pi^{\top} \mathbf{M}=0
$$

$$
\mathrm{M} \text { is not unique } \quad \mathbf{M}=\left[\begin{array}{l}
\mathrm{p} \\
\mathrm{I}
\end{array}\right] \quad p=\left(-\frac{b}{a},-\frac{c}{a},-\frac{d}{a}\right)^{\top}
$$

Lines

Defined as the join of two points A, B

$$
\mathrm{W}=\left[\begin{array}{l}
\mathrm{A}^{\top} \\
\mathrm{B}^{\top}
\end{array}\right] \quad \lambda \mathrm{A}+\mu \mathrm{B}
$$

(Dual) Defined as the intersection of two planes P, Q

$$
\begin{aligned}
& \mathrm{W}^{*}=\left[\begin{array}{l}
\mathrm{P}^{\top} \\
\mathrm{Q}^{\top}
\end{array}\right] \quad \lambda \mathrm{P}+\mu \mathrm{Q} \\
& \mathrm{~W}^{*} \mathrm{~W}^{\top}=\mathrm{WW}^{* \top}=0_{2 \times 2}
\end{aligned}
$$

Example: X-axis

$$
\mathrm{W}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \mathrm{W}^{*}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Points, Lines and Planes

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{c}
\mathrm{W} \\
\mathrm{X}^{\top}
\end{array}\right] \quad \mathbf{M} \pi=0 \\
& \mathbf{M}=\left[\begin{array}{c}
\mathrm{W}^{*} \\
\pi^{\top}
\end{array}\right] \quad \mathbf{M} \mathbf{X}=0
\end{aligned}
$$

Plücker Matrices

Plücker matrix (4×4 skew-symmetric homogeneous matrix)

$$
\begin{aligned}
& l_{i j}=A_{i} B_{j}-B_{i} A_{j} \\
& \mathrm{~L}=\mathrm{AB}^{\top}-\mathrm{BA}^{\top}
\end{aligned}
$$

1. L has rank $2 \mathrm{LW}^{* \mathrm{~T}}=0_{4 \times 2}$
2. 4 dof
3. generalization of $\mathrm{l}=\mathrm{x} \times \mathrm{y}$
4. L independent of choice A and B
5. Transformation $\mathrm{L}^{\prime}=\mathrm{HLH}^{\top}$

Example: X-axis

$$
\mathrm{L}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{\top}=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Plücker matrices

Dual Plücker matrix L^{*}

$$
\begin{aligned}
& \mathrm{L}^{*}=\mathrm{PQ}^{\top}-\mathrm{QP}^{\top} \\
& \mathrm{L}^{*^{\prime}}=\mathrm{H}^{-\top} \mathrm{LH}^{-1}
\end{aligned}
$$

Correspondence

$$
l_{12}: l_{13}: l_{14}: l_{23}: l_{42}: l_{34}=l_{34}^{*}: l_{42}^{*}: l_{23}^{*}: l_{14}^{*}: l_{13}^{*}: l_{12}^{*}
$$

Join and incidence

$$
\begin{array}{ll}
\pi=L^{*} \mathrm{X} & \text { (plane through point and line) } \\
\mathrm{L}^{*} \mathrm{X}=0 & \text { (point on line) } \\
\mathrm{X}=\mathrm{L} \pi & \text { (intersection point of plane and line) } \\
\mathrm{L} \pi=0 & \text { (line in plane) } \\
{\left[\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots\right] \pi=0 \quad \text { (coplanar lines) }}
\end{array}
$$

Quadrics and dual quadrics

$$
\mathrm{X}^{\top} \mathrm{QX}=0 \quad(\mathrm{Q}: 4 \times 4 \text { symmetric matrix })
$$

1. 9 d.o.f.
2. in general 9 points define quadric

$$
\mathrm{Q}=\left[\begin{array}{cccc}
\bullet & \cdot & \cdot & \cdot \\
0 & \bullet & \cdot & \cdot \\
0 & \circ & \cdot & \cdot \\
0 & 0 & 0 & \cdot
\end{array}\right]
$$

3. $\operatorname{det} \mathrm{Q}=0 \leftrightarrow$ degenerate quadric
4. Polar plane $\pi=\mathrm{QX}$
5. (plane \cap quadric) $=$ conic $\quad \mathrm{C}=\mathrm{M}^{\top} \mathrm{QM} \quad \pi: \mathrm{X}=\mathrm{Mx}$
6. transformation $\mathrm{Q}^{\prime}=\mathrm{H}^{-\top} \mathrm{QH}^{-1}$

Q*: dual quadric, equations on planes
$\pi^{\top} Q^{*} \pi=0$

1. relation to quadric $\mathrm{Q}^{*}=\mathrm{Q}^{-1}$ (non-degenerate)
2. transformation $\mathrm{Q}^{*}=\mathrm{HQ}^{*} \mathrm{H}^{\top}$

Quadric Classification

Rank	Sign.	Diagonal	Equation	Realization
4	4	$(1,1,1,1)$	$\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}+1=0$	No real points
	2	$(1,1,1,-1)$	$\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}=1$	Sphere
	0	$(1,1,-1,-1)$	$\mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}+1$	Hyperboloid (1S)
3	3	$(1,1,1,0)$	$\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}=0$	Single point
	1	$(1,1,-1,0)$	$\mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}$	Cone
2	2	$(1,1,0,0)$	$\mathrm{X}^{2}+\mathrm{Y}^{2}=0$	Single line
	0	$(1,-1,0,0)$	$\mathrm{X}^{2}=\mathrm{Y}^{2}$	Two planes
1	1	$(1,0,0,0)$	$\mathrm{X}^{2}=0$	Single plane

Quadric Classification

Projectively equivalent to sphere:

sphere
ellipsoid

hyperboloid of paraboloid two sheets
Ruled quadrics: (contain straight line)

Degenerate ruled quadrics:

hyperboloids of one sheet

Twisted Cubic

conic
twisted cubic

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathrm{A}\left(\begin{array}{c}
1 \\
\theta \\
\theta^{2}
\end{array}\right)=\left(\begin{array}{c}
a_{11}+a_{12} \theta+a_{13} \theta^{2} \\
a_{21}+a_{22} \theta+a_{23} \theta^{2} \\
a_{31}+a_{32} \theta+a_{33} \theta^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\mathrm{A}\left(\begin{array}{c}
1 \\
\theta \\
\theta^{2} \\
\theta^{3}
\end{array}\right)=\left(\begin{array}{c}
a_{11}+a_{12} \theta+a_{13} \theta^{2}+a_{14} \theta^{3} \\
a_{21}+a_{22} \theta+a_{23} \theta^{2}+a_{24} \theta^{3} \\
a_{31}+a_{32} \theta+a_{33} \theta^{2}+a_{34} \theta^{3} \\
a_{41}+a_{42} \theta+a_{43} \theta^{2}+a_{44} \theta^{3}
\end{array}\right)
$$

1. 3 intersection with plane (in general)
2. 12 dof (15 for $\mathrm{A}-3$ for reparametrisation $\left(1 \theta \theta^{2} \theta^{3}\right)$
3. 2 constraints per point on cubic, defined by 6 points
4. projectively equivalent to $\left(1 \theta \theta^{2} \theta^{3}\right)$
5. Horopter \& degenerate case for reconstruction

Hierarchy of Transformations

				Invariant Properties
	Projective 15dof	$\left[\begin{array}{ll}A & t \\ v^{\top} & v\end{array}\right]$		Intersection and tangency
5 for affine scaling	Affine 12dof	$\left[\begin{array}{ll}\mathrm{A} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right]$		Parallellism of planes, Volume ratios, centroids, The plane at infinity π_{∞}
3 for rotation 3 for translation 1 for isotropic scaling	Similarity 7dof	$\left[\begin{array}{cc}s \mathrm{R} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right]$		The absolute conic Ω_{∞}
	Euclidean 6dof	$\left[\begin{array}{cc}\mathrm{R} & \mathrm{t} \\ 0^{\top} & 1\end{array}\right]$		Volume

Screw Decomposition

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.

Screw Decomposition

Any particular translation and rotation is equivalent to a rotation about a screw axis and a translation along the screw axis.

screw axis // rotation axis
$\mathrm{t}=\mathrm{t}_{/ /}+\mathrm{t}_{\perp}$

The Plane at Infinity

$$
\boldsymbol{\pi}_{\infty}^{\prime}=\mathbf{H}_{A}^{-\top} \boldsymbol{\pi}_{\infty}=\left[\begin{array}{cc}
\mathbf{A}^{-\top} & 0 \\
-\mathbf{A t} & 1
\end{array}\right]\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\pi_{\infty}
$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

1. canical position $\pi_{\infty}=(0,0,0,1)^{\top}$
2. contains directions $\mathrm{D}=\left(X_{1}, X_{2}, X_{3}, 0\right)^{\top}$
3. two planes are parallel \Leftrightarrow line of intersection in π_{∞}
4. line $/ /$ line (or plane) \Leftrightarrow point of intersection in π_{∞}

The Absolute Conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞}.
In a metric frame:

$$
\left.\begin{array}{c}
X_{1}^{2}+X_{2}^{2}+X_{3}^{2} \\
X_{4}
\end{array}\right\}=0
$$

or conic for directions:

$$
\left(X_{1}, X_{2}, X_{3}\right) \mathrm{I}\left(X_{1}, X_{2}, X_{3}\right)^{\top}
$$

(with no real points)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

1. Ω_{∞} is only fixed as a set
2. Circle intersect Ω_{∞} in two points
3. Spheres intersect π_{∞} in Ω_{∞}

The Absolute Conic

$$
\begin{array}{ll}
\text { Euclidean: } & \cos \theta=\frac{\left(\mathrm{d}_{1}^{\top} \mathrm{d}_{2}\right)}{\sqrt{\left(\mathrm{d}_{1}^{\top} \mathrm{d}_{1}\right)\left(\mathrm{d}_{2}^{\top} \mathrm{d}_{2}\right)}} \\
\text { Projective: } & \cos \theta=\frac{\left(\mathrm{d}_{1}^{\top} \Omega_{\infty} \mathrm{d}_{2}\right)}{\sqrt{\left(\mathrm{d}_{1}^{\top} \Omega_{\infty} \mathrm{d}_{1}\right)\left(\mathrm{d}_{2}^{\top} \Omega_{\infty} \mathrm{d}_{2}\right)}} \\
& \mathrm{d}_{1}^{\top} \Omega_{\infty} \mathrm{d}_{2}=0 \text { (orthogonality=conjugacy) }
\end{array}
$$

The Absolute Dual Quadric

$$
\Omega_{\infty}^{*}=\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0^{\top} & 0
\end{array}\right]
$$

The absolute conic $\Omega^{*}{ }_{\infty}$ is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

1. 8 dof
2. plane at infinity π_{∞} is the nullvector of Ω_{∞}
3. Angles:

$$
\cos \theta=\frac{\pi_{1}^{\top} \Omega_{\infty}^{*} \pi_{2}}{\sqrt{\left(\pi_{1}^{\top} \Omega_{\infty}^{*} \pi_{1}\right)\left(\pi_{2}^{\top} \Omega_{\infty}^{*} \pi_{2}\right)}}
$$

