

電腦視覺 Computer Vision: from Recognition to Geometry

簡韶逸 Shao-Yi Chien 王鈺強 Yu-Chiang Frank Wang Department of Electrical Engineering

National Taiwan University

Fall 2018

Computer Vision

- Describe the world that the computer see in one or more images and to reconstruct its properties, such as shape, illumination, and color distribution
- Is it hard? An inverse problem

Computer Vision

[R. C. James]

• Optical character recognition (OCR)

Digit recognition, AT&T labs http://www.research.att.com/~yann/ License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

• Face detection: in all digital cameras and smart phones

• Face detection: in all digital cameras and smart phones

 Iris recognition (Vision-based biometrics)

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Object recognition

[Girod et al. 2011]

[slyce.it]

• Shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Motion capture

Pirates of the Carribean, Industrial Light and Magic

Computer vision in sports

Hawk-Eye: helping/improving referee decisions

Smart cars: ADAS

[Intel Mobileye]

Surveillance system

Ref: Chih-Wei Wu, Meng-Ting Zhong, Yu Tsao, Shao-Wen Yang, Yen-Kuang Chen, and Shao-Yi Chien, "Track-clustering Error Evaluation for Track-based Multi-camera Tracking System Employing Human Re-identification," *CVPR 2016 Workshop*.

Vision-based interaction

DodecaPen: Puppy

• Robotics

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Medical image

3D imaging MRI, CT Image guided surgery Grimson et al., MIT

Important Near-Future Applications

- AR/VR
- Autonomous vehicle
- Robot
- IoT: AloT (Al+IoT), IoVT (Internet-of-Video-Things)
- Medical imaging
- Large-scale video analysis
- Computational photography/image synthesis
- Industrial automation

Related Fields

 The boundaries between digital image processing/computer vision/computer graphics become vague nowadays

About this Course...

- Provide a comprehensive introduction to the field of computer vision (CV)
 - From classical methods to deep learning based methods
 - From recognition to geometry
 - No experiences in CV and image process are required
- The two courses, Computer Vision and Deep Learning for Computer Vision, can give you a complete view of modern CV techniques
- Grading
 - Four homeworks: 60%
 - Class participation: 5%
 - Group final project: 35%

Course Website

- Course website
 - http://media.ee.ntu.edu.tw/courses/cv/18F/

- TA
 - 塗偉志
 - MD-726
 - wctu@media.ee.ntu.edu.tw
 - Will lead TA teams for each homework

Schedule

Week	Date	Торіс
1	9/12	Introduction to human vision systems
2	9/19	Camera basic, image formation and basic Image processing
3	9/26	Feature detection and matching
4	10/3	Machine learning basics
5	10/10	國慶日放假
6	10/17	Deep learning basics
7	10/24	Recognition and detection
8	10/31	Segmentation
9	11/7	Projective Geometry, Transformations and Estimation/Camera calibration
10	11/14	Camera Geometry and Single View Geometry
11	11/21	Two-View Geometry
12	11/28	Dense motion estimation/stereo
13	12/5	Structure from motion
14	12/12	3D reconstruction/depth sensing
15	12/19	Computational photography
16	12/26	Object tracking
17	1/2	Advanced topics in CV
18	1/9	CES
19	1/16	Final Project

Homeworks

- Four assignments:
 - HW1: Image filters
 - HW2: Detection and recognition
 - HW3: Pose estimation
 - HW4: Stereo matching
- Official language is Python
- LabO: Python and basic image processing
 - 9/19 18:30--20:00 @ EEII-143

Final Project

- Will have one or two problems/challenges
- Each team should have 3—4 members
- Project will be supported by industry with awards
- Evaluated by professor, TAs, guest judges from industry, and you (peer review)!
- The problems/challenges will be announced around the week of mid exam

Reference Materials

Reference books

 And papers in CVPR, ICCV, ECCV, BMVC, WACV, ACCV,

加簽規則

- 第一次開課,請慎重考慮......
- 以教室容量為限,可加簽50位同學
- 篩選順序
 - 電資學院(含輔系)>工學院>理學院>其他
 - 博班 > 碩二 > 碩一 = 大四 > 大三 > 大二 > 大一
- 請於第二節上課之前填寫好下列表單:
 - <u>https://goo.gl/fxocvg</u>
- 第三節上課時將公布獲選名單
- 有選上的同學第三節下課後親自拿學生證(或是可證明身份之文件)來領授權碼

